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Distributed Denial of Service (DDoS) defense is a profound research problem. In recent years, adversaries tend 
to complicate their attack strategies by crafting vast DDoS variants. On the one hand, this trend exacerbates 
both extremes of classification granularity (i.e., binary and attack level) in existing machine learning methods. 
On the other hand, massive attack categories make the filter rule table bulky, as well as cause problems of 
slow reaction presented in the recent state-of-the-art DDoS mitigation system. Therefore, we propose the concept 
of a DDoS family to reconcile/cope with these issues. The specific technical roadmap includes traffic pattern 
characterization, attack fingerprint production, and cross-executed family partition by community detection. 
Through extensive evaluations, we demonstrate the benefits of the proposal in terms of portraying similarities, 
guiding model classification/unknown attack detection, optimizing defense strategies, and speeding filtering 
reactions. For instance, our results show that using only one rule can defend 15 types of attacks due to their 
homogeneous behavioral representation. Particularly, we find the interesting observation that counting the 
backward packet is more efficient and robust against some attacks (e.g., Tor’s Hammer Attack), which is very 
different from previous solutions.
1. Introduction

Distributed Denial of Service (DDoS) continues to be a prevalent at-

tack on Internet today, and their prevalence escalates along with the 
growing number of vulnerable devices connected online. Over the past 
few years, DDoS detection and mitigation have garnered significant at-

tention from the academic and industrial communities (Fayaz et al., 
2015; Liu et al., 2021; Rossow, 2014). For instance, Fayaz et al. (2015)

designed a series of defense policies for common DDoS attacks (e.g.,

SYN Flood and UDP Flood). Rossow (2014) proposed proactive and 
reactive countermeasures against Distributed Reflective Denial of Ser-

vice (DRDoS), such as preventing IP address spoofing and hardening 
protocol. Besides, in industrial scenarios, most devices (e.g., middle-

boxes (Mahimkar et al., 2007)) are deployed in the traffic scrubbing 
centers to mitigate DDoS “as-a-service” (Zhang et al., 2020).
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Nowadays, adversaries tend to craft diverse DDoS variants to com-

plicate their attacks. According to reports from many vendors, there are 
at least hundreds of active DDoS attacks/variants (MAZEBOLT, 2016). 
Therefore, we summarize the following three main challenges suffered 
by security practitioners in addressing massive types of DDoS attacks.

(i) Two extremes of classification models. The existing machine learn-

ing (ML) models for DDoS identification are mainly either binary clas-

sification (Bartos et al., 2016; Caselli et al., 2016; Cho and Shin, 2016; 
Fogla et al., 2006; Fu et al., 2023, 2021; Mirsky et al., 2018; Wang 
et al., 2020b; Xie et al., 2022) or attack-level multi-classification (Bar-

radas et al., 2021; Caselli et al., 2016; van Ede et al., 2020; Holland et 
al., 2021; Lin et al., 2022; Song et al., 2023; Zhao et al., 2023a,b). The 
former only provides binary results with “benign” or “attack” so that 
making it challenging for network operators to explicitly adopt proper 
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countermeasures for mitigating DDoS attacks (also known as semantic 
gap (Liang et al., 2021; Sommer and Paxson, 2010)). While the latter1

will present significant accuracy loss when classes increase, as well as 
labeling each-type attack is labor-intensive for domain-specific experts.

(ii) Defense strategies tend to be bulky. The recent arts demon-

strate powerful superiority by combining DDoS defenses policies with 
emerging data plane primitives, e.g., Data Plane Development Kit 
(DPDK) (Gong et al., 2019), Software Defined Network (SDN) (Mirsky 
et al., 2018; Sisodia et al., 2020), P4 Programmable Switches (Liu et al., 
2021; Zhang et al., 2020). However, these approaches require the corre-

sponding firewall rule for each new emerging DDoS attack, which will 
inevitably result in the rule explosion issue. In other words, the rule li-
brary will be bulky which complicates configuration/maintenance tasks 
and introduces additional latency.

(iii) Slow reaction in traffic scrubbing. Strong adversaries will vary 
their attack strategy so that the volume of per-type attack is below the 
filtering threshold. This hybrid exploit strategy could alternately launch 
different types of DDoS attacks to avoid triggering each filter policy as 
possible (Wu et al., 2014). As a result, the defense system tends to be 
not sensitive and takes effect slowly on traffic scrubbing. For example, it 
has been observed that state-of-the-art (SOTA) defense system (Zhang 
et al., 2020) still requires several seconds to restore normal through-

put following a DDoS attack, we call this phenomenon the slow reaction

problem. This leads to collateral damage wherein the bandwidth for le-

gitimate traffic will be preempted, at times dropping to ∼0 Gbps under 
the worst circumstances.

Given the challenges faced by security practitioners in dealing with 
the massive types of DDoS attacks, we advocate a paradigm shift to-

wards categorizing these DDoS into attack families to reconcile this 
problem. Specifically, we intend to characterize existing DDoS attacks 
based on their traffic pattern and then regard the similar categories as 
a family. For DDoS attacks in the same family, they have homogeneous 
behavioral patterns and we could develop the corresponding defense 
strategies based on the same template. Also, the built families can guide 
the multi-classification task of ML models, thereby achieving a suitable 
trade-off between accuracy and fine-grained labels. Note that our pro-

posed DDoS families differ from the previous work of botnet families 
(e.g., Mirai (Antonakakis et al., 2017), Hajime (Herwig et al., 2019)) 
analysis that aims to depict control manners and scheduling patterns 
for the bots (Wang et al., 2020a).

In this paper, we design a roadmap to construct DDoS families to 
cater to the above intention. As a high-level idea, we portray the fin-

gerprint for per-type DDoS, calculate the similarity between different 
categories to generate the relation graph, and ultimately identify the 
family division as a community detection problem (details can be found 
in § 3.2). Specifically, we extract the comprehensive feature sets involv-

ing categorical and numerical data to manufacture network traffic por-

traits. By computing the probability distribution histogram and kernel 
density estimation, we obtain the per-feature fitted curve, and map it to 
a high-dimensional discrete vector representation through a differentia-

tion process. Moreover, we present a cross-executed solution to mitigate 
the effects of sampling error that alternately build membership from the 
unweighted multiplex graphs and guide the weighted graph partition.

In summary, this paper makes three key contributions.

• We meticulously scrutinize the challenges posed to security prac-

titioners by the multitude of DDoS attack types. To this end, we 
propose the concept of the DDoS attack family to facilitate address-

ing the above issues.

• We design a roadmap for DDoS family construction, encompassing 
the stages of traffic pattern characterization, attack fingerprint pro-

1 Performing multi-classification ML tasks could facilitate fine-grained analy-

sis for defense strategies customization, benefit forensic analysis, profile homol-
2

ogous attack organizations, etc.
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duction, cross-executed community detection including member-

ship generation of the unweighted multiplex graphs and weighted 
graph division.

• We collect 89 types of real-world DDoS traffic from security ven-

dors and the local Internet Service Provider (ISP) to conduct the 
attack family partition experiments, then use 18 types of new at-

tacks to develop family extensibility research. The empirical evalu-

ations demonstrate the effectiveness of the family division in terms 
of attack behavior analysis, ML classification guidelines, defense 
strategy optimization, and filtering reaction acceleration. We re-

lease the code, and the DDoS dataset after removing the private 
information is available on our repository.2

This paper is organized as follows, § 2 investigates background and 
related work on network traffic detection, DDoS attack defense, and 
community detection. § 3 elaborates on the motivation for the appli-

cation scenarios and methodology. § 4 presents the roadmap of family 
division construction, including the feature extraction, fingerprint pro-

duction, and family division. § 5 produces a series of evaluations in 
terms of entire-spectrum family construction, subset attributes analy-

sis, model classification guidelines, defense strategy optimization, and 
traffic scrubbing evaluation. § 6 provides deep insights with respect to 
stability, robustness, and extensibility. In § 7, we in-depth discuss re-

garding involving customized granularity, real-world deployment, lim-

itations, and future works. Finally, we conclude this paper in § 8.

2. Background and related work

In this section, we overview the existing techniques and research 
directions in the current DDoS detection and mitigation landscape. 
Meanwhile, we introduce the background and applications of commu-

nity detection.

2.1. Network traffic detection

Traffic detection aims to detect various intrusion attacks by ana-

lyzing the characteristics of packets or flows. A series of models have 
been proposed that can be roughly divided into binary classification and 
multi-classification approaches. (i) Binary classification models. Whis-

per (Fu et al., 2021) utilizes sequential information based on the fre-

quency domain features to detect malicious traffic. Kitsune (Mirsky et 
al., 2018) discovers abnormal behavior by using AutoEncoder to exam-

ine each packet. Other arts (Tang et al., 2020; Xu et al., 2020) portray 
the patterns of benign and malicious traffic to identify the attacks and 
keep the business stable. These binary classification models only alert 
“attack” but lack more details about attack types that are beneficial for 
defense strategies.

(ii) Multi-classification models. Mousika (Xie et al., 2022) introduces 
the decision tree that is translated from the deep neural network with 
knowledge distillation. FlowLens (Barradas et al., 2021) devises a com-

pact representation of packet length and adjusts the granularity of the 
flow’s frequency distribution intervals to classification with ML models. 
FS-Net (Liu et al., 2019) uses the bi-GRU model to learn the sequence 
features and classifies common applications. Other works (Ciucu et al., 
2014; Korczynski and Duda, 2014; Saha et al., 2019; Shen et al., 2017) 
employ the methods such as clustering, Markov, and recurrent neural 
networks (RNN) to identify the multiple attacks based on the statisti-

cal and sequential features. Deep learning indeed brings more potential 
for traffic characterization and identification, yet the massive categories 
inevitably cause troubles in terms of model accuracy and ground-truth 
label quality. Our DDoS family is promising to reconcile the two ex-

tremes in ML classification.
2 https://github .com /Secbrain /DDoS _Family.
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2.2. DDoS attack defense

DDoS mitigation is a profound research problem. The community 
has developed many approaches, which can be broadly categorized 
into filtering-based approaches (Argyraki et al., 2005; Ioannidis and 
Bellovin, 2002; Liu et al., 2008; Mahajan et al., 2002; Savage et al., 
2000; Song and Perrig, 2001), capability-based approaches (Liu et al., 
2010, 2016; Yaar et al., 2004; Yang et al., 2005), overlay-based sys-

tems (Andersen, 2003; Dixon et al., 2008; Keromytis et al., 2002), 
systems based on future Internet architectures (Andersen et al., 2008; 
Naylor et al., 2014; Zhang et al., 2011), and other variants (Fayaz et al., 
2015; Gilad et al., 2016; Walfish et al., 2006). It is not difficult to find 
that most of the research hotspots focus on are in bandwidth capabil-

ity, dataplane primitives, etc. We intend to pioneer a new direction in 
the current DDoS landscape, i.e., examining attacks at a family level to 
discover deep insights and optimize defense designs.

2.3. Community detection

Community detection, as the method to understand the struc-

ture of large and complex networks, has found use in metabolic 
networks (Guimera and Nunes Amaral, 2005), mobile phone net-

works (Ahn et al., 2010; Li et al., 2014), airline transportation net-

works (Lambiotte et al., 2019), and social networks (Amin et al., 2017; 
Tong et al., 2016). Recent works use community detection tasks to de-

tect similar groups based on the network communication graph (Baldesi 
et al., 2018; Ruehrup et al., 2013). Considering the distinct advantages 
of the community detection algorithm in discovering the connection re-

lationship, we intend to use it to search the DDoS family partitions. 
Subsequently, we will clarify the details of this specific motivation.

3. Motivation

3.1. What benefits DDoS family brings?

In addressing the existing challenges, we summarize the advantages 
of our DDoS family involving the following aspects. (i) Providing deep 
insights into attack similarity (§ 5.1 and § 5.2). Through characteriz-

ing the attack traffic to mine their similarities and further give novel 
insights into attack mechanisms. For instance, we find that counting 
backward packets could be a more robust scheme, which diverges from 
conventional methods. (ii) Guiding the model classification task (§ 5.3). 
Conducting the ML model classification at the family level to recon-

cile the two extremes between binary and attack-level. Therefore, it 
can facilitate the trade-off between detection granularity and accuracy.

(iii) Optimizing defense strategies (§ 5.4). On the one hand, combin-

ing defense strategies for similar attacks to optimize the rule library 
to be lightweight. On the other hand, exploring new perspectives (e.g.,

backward packet statistics) can significantly enhance the robustness of 
defense mechanisms. (iv) Speeding up the reaction of filters (§ 5.5). 
Based on the above-optimized rules, aggregating the thresholds thereby 
improves the sensitivity for compound attacks and reduces reaction 
time.

3.2. Why not use the existing clustering?

Readers may be concerned about why not use the unsupervised 
clustering algorithms to produce the DDoS family, we elucidate this 
problem in two aspects.

(i) Optimization objective. The primary objective of clustering is to 
differentiate between individual instances (i.e., focus on the node of 
a graph), while community detection seeks to partition relationships 
within the network (i.e., focus on the edge of a graph). For example, K-

means (Hartigan and Wong, 1979), as a distance-based method, tends 
to identify divisions where samples in each cluster are tightly concen-
3

trated. The sum of the distances of all samples from their cluster centers 
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is called the distortion cost function, and minimizing its value is the op-

timization objective of K-means. Another typical representative is the 
density-based approach DBSCAN (Ester et al., 1996), which tends to 
split samples into several sets that per-group density is large enough. 
Different from these clustering methods, the most common metric of 
community detection is modularity (Traag et al., 2019). It refers to 
maximizing the difference between the actual number of edges in a 
community and the expected number of such edges. In other words, 
it focuses on the graph’s edges to partition the tightly connected sub-

graphs. Therefore, the optimization objective of community detection 
aligns more closely with our intended approach.

(ii) Search algorithm. Unsupervised clustering algorithms come with 
certain limitations. K-means necessitates the predefined number of in-

put clusters, while DBSCAN struggles with uneven density distributions. 
A more crucial problem is that they would focus more on the global 
metric while lacking some fine-grained observation for relationships 
between node members. For instance, the clustering algorithms can 
produce a set of samples that meet the pre-defined threshold (distance 
or density). However, the community detection might verify the con-

nection within partitions, e.g., further optimizing sub-partitions if there 
exists significant isolation (more details in § 4.4). Meanwhile, compared 
to clustering algorithms, community detection produces more stable 
partition results even with different hyperparameter settings (as eval-

uated in § 6.1). Overall, we intend to identify the DDoS family division 
as a community detection problem,3 which is more suitable than clus-

tering given the above considerations. Furthermore, we also conduct a 
series of evaluations for these methods in § 5.1.

4. Roadmap for family construction

4.1. Overview

Our roadmap for DDoS attack families construction is shown in 
Fig. 1. First, 𝑛-dimensional features are extracted from packet-level to 
session-level involving the categorical and numerical data. By sliding 
windows, we study the entire session as well as its several snippets. 
Next, our fingerprint production for each type of DDoS refers to calcu-

lating the probability distribution histogram, smoothing by the kernel 
density estimation, and further generating the fingerprint matrix with 
a differential process. Subsequently, we consider the family division as 
a community detection task and design a cross-executed process to al-

leviate the influence of random error from sampling. Finally, the DDoS 
families would advance the ML model and optimize the defense deploy-

ment. We will elaborate on the design details following.

4.2. Feature extraction

The meta fields are aggregating from per packet to the traffic ses-

sion with the 5-tuple index, i.e., {𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑃 , 𝑆𝑜𝑢𝑟𝑐𝑒 𝑃 𝑜𝑟𝑡, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝐼𝑃 , 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃 𝑜𝑟𝑡, 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙}. It contains two kinds of data, cate-

gorical attributes and real-valued attributes (numerical). Table 1 shows 
the extracted features for each bi-directional flow. Among them, the 
categorical-type data are from layer 2∼7 involving 14 fields such 
as 𝑇𝐿𝑆.ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒. These features represent some mapping relations 
and have no numerical meaning, so we encode them with one-hot. 
For the numerical-type data, we process per session as 6 groups, 
including the entire session and 5 snippets with sliding windows 
{[0,0.1𝑠), [0.1𝑠,0.5𝑠), [0.5𝑠,1.5𝑠), [1.5𝑠,10𝑠), [10𝑠,∞)}. In each group, 
the feature computations are executed from the forward, backward, 

3 Therefore, we need to convert the relationship between various types of 
DDoS attacks into a graph structure representation as the input of the com-

munity detection algorithm. In addition, graph-structured data also has the 
advantages of rich semantic information, prone to visualization, and conduces 

exploration of connection patterns.
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Fig. 1. The roadmap of proposed DDoS attack family construction.
Table 1

The feature set. “TTL” denotes “time to live”.

Categorical

Frame TCP UDP ICMP

frame.protocols
tcp.srcport,

tcp.dstport

udp.srcport,

udp.dstport

icmp.type,

icmp.code

DNS HTTP TLS

dns.flags
request.method,

response.code

record.version, record.content_type,

handshake, handshake.type

Numerical

Time window
Direction

Forward Backward Bi-dir

whole,

[0, 0.1),

[0.1, 0.5),

[0.5, 1.5),

[1.5, 10),

[10, )

Sum

Frame IP TCP

packet_num,

duration

flags_df,

flags_mf

ACK, URG, PUSH,

RESET, SYN, FIN

Statistic

Max Min Mean Std

total_length, time_delta, ip.frag_offset, ip.ttl,

tcp.window_size, tcp.window_size_scalefactor,

tcp.window_size_value, dns.count.queries

and bi-directional, respectively. Particularly, the duration, number of 
packets, and a series of flags (e.g., 𝐼𝑃 .𝑓𝑙𝑎𝑔𝑠_𝑑𝑓 and 𝑇𝐶𝑃 .𝐴𝐶𝐾) will 
be counted as the respective sums, while other fields (e.g., packet 
length and time delta) will be calculated the statistical features (i.e.,
𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝑀𝑒𝑎𝑛, and 𝑆𝑡𝑑). Overall, it generates 770-dimensional 
(i.e., 𝑛 = 770) features to characterize the traffic in terms of temporal, 
volumetric, and header-field distributions.

4.3. Fingerprint production

To produce the fingerprint of per-type DDoS, we first calculate the 
probability distribution histogram, then smooth by the kernel density 
estimation, and finally discretize with a differential process. Before per-

forming the calculation, we unify the value range for sample set 𝑋 by 
Max-Min normalization 𝑋 = 𝑥−min(𝑋)

max(𝑋)−𝑚𝑖𝑛(𝑋) , where 𝑥 ∈𝑋. For each type 
of DDoS attacks 𝑖 (𝑖 ∈ [1, 𝜇]), the fingerprint production is solely based 
on its instances 𝑋𝑖.

Probability Distribution Histogram Calculation. The first step is 
to calculate the probability distribution histogram for each dimension 
feature. Considering one-dimension feature vector 𝑧 = (𝑧1, ⋯ , 𝑧𝑚) ∈ℝ𝑚

from 𝑚 instances {𝑥1, ⋯ , 𝑥𝑚} of same attack, the histogram generation 
function 𝜙 references attribute the value to 𝑏 bins 𝜃 = (𝜃1, ⋯ , 𝜃𝑏) ∈ ℝ𝑏

such as

𝜙(𝑧;𝜃 ) = 1
𝑚∑[[

𝑧 ∈ 𝜃
]]

(1)
4

𝑖
𝑚

𝑗=1
𝑗 𝑖
is the value of the 𝑖-th bin corresponding to a portion of components of 
𝑧 falling to the interval 𝜃𝑖, where [[⋅]] = 1 if the condition (⋅) is satisfied 
and 0 otherwise.

Kernel Density Estimation. Next, we would smooth the histogram 
bins by the kernel density estimation. The function for the k-𝑡ℎ feature 
values is as follows

𝑓𝑘(𝑥) = 1
2ℎ

1
𝑚

𝑚∑
𝑖=1

[[
𝑥𝑖 ∈ [𝑥− ℎ,𝑥+ ℎ)

]]
= 1

𝑚ℎ

𝑚∑
𝑖=1

1
2

[[ |𝑥− 𝑥𝑖|
ℎ

≤ 1
]] (2)

where the aggregation offset ℎ = 1∕2𝑏 and ∫ 1
0 𝑓𝑘(𝑥) = 1. The standard 

kernel density estimate can further be expressed as

𝑓𝑘(𝑥) = 1
𝑚ℎ

𝑚∑
𝑖=1

𝐾(
𝑥− 𝑥𝑖

ℎ
) (3)

where 𝐾(⋅) denotes the kernel function and we set it to Eq. (4).

𝐾(𝑥) =
{

1∕2 if |𝑥| ≤ 1
0 otherwise (4)

Therefore, features of all dimensions will be transformed into corre-

sponding distribution curves, i.e., {𝑓 1(𝑥), ⋯ , 𝑓𝑛(𝑥)}.

Differential Process. Finally, we perform a differentiation process 
to discretely sample and obtain a vector representation of the curve. To 
generate 𝑠-dimensional vectors, the normalization space will be evenly 
divided into 𝑠 − 1 parts, i.e., the sampling points are 𝑥̂ = (𝑥̂1, ⋯ , 𝑥̂𝑠) =
(0, 1

𝑠−1 , ⋯ , 𝑠−2
𝑠−1 , 1). Thus, the fingerprint 𝑖 of attack category 𝑖 can be 

represented as a 𝑛 × 𝑠 matrix

𝑖 =
⎛⎜⎜⎝
𝑓 1(𝑥̂)
⋮

𝑓𝑛(𝑥̂)

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑓 1(𝑥̂1) 𝑓 1(𝑥̂2) ⋯ 𝑓 1(𝑥̂𝑠)

⋮
𝑓𝑛(𝑥̂1) 𝑓𝑛(𝑥̂2) ⋯ 𝑓𝑛(𝑥̂𝑠)

⎞⎟⎟⎠ (5)

where 𝑓 𝑖(𝑥̂𝑗 ) denotes the 𝑗-𝑡ℎ quantified values in 𝑖-𝑡ℎ dimension fea-

ture curve.

4.4. Family division

Our intention is to explore the similarity between attacks (i.e., the 
edges’ relationship in a graph) to find partitions, so we identify family 
division as a community detection problem.

Graph Generation. Based on the aforementioned attack finger-

prints, we generate a graph to portray relationships between different 
types of DDoS. Specifically, the node 𝑣𝑖 refers to the category 𝑖, and 
the weight 𝐴𝑖𝑗 of the edge between the nodes 𝑣𝑖 and 𝑣𝑗 represents the 
similarity between the categories 𝑖 and 𝑗 , e.g., the 𝓁2 distance shown 

in Eq. (6).
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Algorithm 1 Function Partition_Search(𝐺, ).

Require: The graph 𝐺 and the initial partition  ({{𝑣}|𝑣 ∈ 𝑉 (𝐺)})

Ensure: The result of partition 
1: 𝐺ori =𝐺,  ←Node_Move(𝐺, )
2: while || ≠ |𝑉 (𝐺)| do

3: ref ← Partition_Ref ine(𝐺, )
4: 𝐺←Node_Aggregate(𝐺, ref )
5:  ← {{𝑣|𝑣 ∈ 𝑉 (𝐺), 𝑣 ⊆ 1}|1 ∈ }
6:  ←Node_Move(𝐺, )
7: end while

8: return  ← {{𝑣|𝑣 ∈ 𝑉 (𝐺ori), 𝑣 ⊆ 1}|1 ∈ }

𝓁2(𝑖,𝑗 ) =
‖‖‖𝑖,𝑗

‖‖‖2 =
√∑

𝑝,𝑞

(𝑓𝑝

𝑖
(𝑥̂𝑞) − 𝑓

𝑝

𝑗
(𝑥̂𝑞))2 (6)

To focus on the significant relationships, we retain the tightly connected 
edges with top 𝜂% weights. Furthermore, this graph construction will 
be performed 𝑡 times as cross execution in § 4.3. That is to say, we could 
obtain 𝑡 heterogeneous graphs (𝐺1, ⋯ , 𝐺𝑡) based on the same node-set 
(i.e., DDoS types).

Modularity Metric. Given without other prior knowledge between 
attacks, the modularity  is a suitable optimization metric that tries 
to maximize the difference between the actual number of edges in a 
community and the expected number of such edges. Consider a graph 
𝐺, we use 𝑒𝑐 to represent the actual number of edges in community 𝑐. 
The expected number of edges can be expressed as 𝐾

2
𝑐

2𝑚 , where 𝐾𝑐 is the 
sum of the degrees of the nodes in community 𝑐 and 𝑚 = 1

2
∑

𝑖𝑗 𝐴𝑖𝑗 is 
the total number of edges in the graph. We can calculate the modularity 
as

= 1
2𝑚

∑
𝑖,𝑗

[𝐴𝑖𝑗−
𝑘𝑖𝑘𝑗

2𝑚
]𝛿(𝑐𝑖, 𝑐𝑗 ) =

1
2𝑚

∑
𝑐

(𝑒𝑐−𝛾
𝐾2

𝑐

2𝑚
) (7)

where 𝑘𝑖 =
∑

𝑗 𝐴𝑖𝑗 is the (weighted) degree of node 𝑣𝑖 , 𝑐𝑖 refers to its 
community, as well as 𝛿(𝑐𝑖, 𝑐𝑗 ) = 1 if 𝑐𝑖 = 𝑐𝑗 and 0 otherwise. Mean-

while, 𝛾 > 0 is a resolution parameter and the higher values lead to 
more communities.

In addition, the change of modularity by moving a node 𝑣 to a 
community 1 for the partition  can be represented as Δ(𝑣↦1) =
(𝑣↦1) − . Particularly, when moving an isolated node 𝑣𝑖 into a 
community 1, its modularity variation can be calculated as

Δ(𝑣𝑖↦1) =[
∑

in+2𝑘𝑖,in
2𝑚

−(
∑

tot+𝑘𝑖
2𝑚

)2]−[
∑

in
2𝑚

−

(
∑

tot
2𝑚

)2−(
𝑘𝑖

2𝑚
)2] =

𝑘𝑖,in

𝑚
−

𝑘𝑖
∑

tot

2𝑚2

(8)

where 
∑

in is the weighted sum of the links inside 1, 
∑

tot is the

weighted sum of the links incident to nodes in 1, and 𝑘𝑖,in is the 
weighted sum of the links with starting node 𝑣𝑖 in 1.

Partition Search. We leverage the Leiden (Traag et al., 2019) al-

gorithm to conduct the partition search for the pre-constructed graphs. 
Specifically, it consists of three phases: (i) local moving of nodes, (ii)
refinement of the partition and (iii) node aggregation for the refined 
partition. The iteration process for these three phases is described in 
Algorithm 1.

(i) The first stage is node moving (Algorithm 2), the default value 
of the initial partition is one node by one community (i.e., {{𝑣}|𝑣 ∈
𝑉 (𝐺)}) if without specified. We enqueue all nodes in the graph, and 
successively move the head node in the queue to the community 1
that maximizes the modularity increment. After moving the node, its 
neighbor nodes that do not belong to 1 will be added to the tail of the 
queue 𝑄. Until the queue is empty, the process of node moving ends.

(ii) In the stage of partition refinement, the community could be fur-

ther split into multiple sub-communities. As Algorithm 3 shows, ref
is initially set to a singleton partition, and the single community node 
can be merged with other communities in ref to increase the modu-
5

larity. Notably, mergers are performed only within each community of 
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Algorithm 2 Function Node_Move(𝐺, ).

Require: The graph 𝐺 and the partition 
Ensure: The result of partition 
1: 𝑄 ←Queue(𝑉 (𝐺))
2: while 𝑄 ≠ ∅ do

3: 𝑣 ←𝑄.pop(), ′
1 ← arg max1∈∪∅Δ(𝑣↦1 )

4: if Δ(𝑣↦′
1 )
> 0 then (c.f., Eq. (8))

5:  ← (𝑣 ↦ ′
1)

6: 𝑄.push({𝑢|(𝑢, 𝑣) ∈𝐸(𝐺), 𝑢 ∉ ′
1} −𝑄)

7: end if

8: end while

9: return 

Algorithm 3 Function Partition_Refine(𝐺, ).

Require: The graph 𝐺 and the partition 
Ensure: The result of refined partition ref
1: ref = {{𝑣}|𝑣 ∈ 𝑉 (𝐺)}
2: for all 1 ∈  do

3: for all 𝑣 ∈{ 𝑣| 𝑣 ∈1 , 𝐸(𝑣, 1−𝑣) ≥(𝑣 , 1)} do (c.f., Eq. (9))

4: if 𝑣 ∈ 2 ∈ ref and |2| = 1 then

5:  ←{3|3∈ref ∩1, 𝐸(3, 1−3) ≥(3, 1)}
6: Random select ′

3 within  according to Eq. (10)

7: ref ← ref (𝑣 ↦ ′
3)

8: end if

9: end for

10: end for

11: return ref

the partition  . The prerequisite of merging is that the node and the 
community 3 in ref is well connected to their belonging community 
1 in  (i.e., the nodes in 3 ⊆ 1 have more than the expected edges 
(3, 1) with other nodes in 1).

(3,1)=𝛾𝑛(3)⋅𝑛(1−3)=𝛾𝑛(3)⋅(𝑛(1)−𝑛(3)) (9)

where 𝑛(⋅) refers to the number of nodes in the community. As described 
in Eq. (10), the larger increment of the modularity, the community is 
more likely to be selected. The randomness degree of the community 
selection is determined by a parameter 𝛽 > 0, which allows the partition 
space to be explored more broadly.

Pr( ′
3=3)∼

{
𝑒
𝛽Δref (𝑣↦3) if Δref (𝑣↦3)≥0

0 otherwise
(10)

(iii) In the last stage, the nodes connected to each other will be aggre-

gated, and the edges are rebuilt based on the refined partition ref as 
designed in Algorithm 4. Note that the aggregate node’s community is 
inherited from the original node in this stage. Ultimately, as described 
in Algorithm 1, these three stages are iteratively conducted until the 
number of partitions equals the number of aggregated nodes, i.e., the 
partition results are no longer improved.

Algorithm 4 Function Node_Aggregate(𝐺, ).

Require: The graph 𝐺 and the partition 
Ensure: The result of graph 𝐺
1: 𝑉 ← 
2: 𝐸 ← {(1, 2)|(𝑢, 𝑣) ∈𝐸(𝐺), 𝑢 ∈ 1 ∈  , 𝑣 ∈ 2 ∈ }
3: return 𝐺 =Graph(𝑉 , 𝐸)

Membership Generation. As shown in Fig. 1(③), 𝑡 − 1 unweighted 
graphs 𝐺 = {𝐺1, ⋯ , 𝐺𝑡−1} are used to obtain the membership mem by 
performing the above partition search process. Notably, the difference 
here is that we employ the modularity designed explicitly for the mul-

tiplex graphs, as shown in Eq. (11).

multi=
1
2𝜇

∑
𝑖𝑗𝑙𝑟

[(𝐴𝑖𝑗𝑙−𝛾𝑠
𝑘𝑖𝑙𝑘𝑗𝑙

2𝑚𝑙

𝛿𝑙𝑟)+𝛿𝑖𝑗 ]𝛿(𝑐𝑖𝑙, 𝑐𝑗𝑟) (11)

where 𝐴𝑖𝑗𝑙 ∈ {0, 1} represents the connection between nodes 𝑣𝑖 and 𝑣𝑗∑

in the 𝑙-𝑡ℎ graph, 𝑘𝑗𝑙 = 𝑖 𝐴𝑖𝑗𝑙 , 𝛿𝑖𝑗 = 1 only if 𝑖 = 𝑗, and 𝑐𝑖𝑙 refers to the 
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Fig. 2. The built four attack families are based on 89 types of DDoS.
community of the node 𝑣𝑖 in the 𝑙-𝑡ℎ graph. Also, the initial partition of 
the multiplex graphs adopts the default value.

Family Formation. We use the generated membership as the initial 
partition to guide the partition research process for the weighted graph. 
The edges’ weights refer to 𝐴𝑖𝑗 = 1∕𝓁2(𝑖, 𝑗 ). This design mainly stems 
from the consideration that multiple sampling can reduce the contin-

gency of the family division results and enhance its reliability. By this 
step, we can obtain a family division result recorded as 1.

Cross-Executed Construction. To mitigate the effects of random 
errors, the above process will iterate 𝑡 times, i.e., the 𝐺𝑖 ∈ {𝐺1, ⋯ , 𝐺𝑡}
takes turns as the weighted graph and others as unweighted graphs to 
generate membership. We could get 𝑡 group of results {1, ⋯ , 𝑡} in 
total, and the final family f inal is confirmed as the most frequently one 
from obtained partitions.

f inal = argmax
𝑖

𝑛(𝑖), 𝑛(𝑖) =
∑

𝑗

[[
𝑗 =𝑖

]]
(12)

5. Evaluation

Our evaluations revolve around the benefits based on the DDoS 
family, including deep insights for attacks (coarse-grained and fine-

grained), reconciling two extremes of ML classification, and optimizing 
filter strategies. Finally, we conduct the practical evaluation of traffic 
scrubbing and compare our scheme with the SOTA DDoS mitigation 
system.

Dataset. In the experiments, we use the real-world DDoS attacks 
traffic from security vendors and the local Internet Service Provider 
(ISP). We collect 72 types of DDoS (and the additional 18 types of at-

tacks used for unknown attack detection and family extensibility) from 
the knowledge base of MAZEBOLT4 (MAZEBOLT, 2016) such as UDP, 
ACK-FIN, HTTP-GET floods. Furthermore, we also work with the local 
ISP5 to capture DDoS traffic including 17 kinds of attacks, e.g., DNS 
query, NTP reflection, and ICMP redirect. More details of all 89 types 
of DDoS could be found in our online repository.

4 Using MAZEBOLT since it covers most of the popular DDoS attacks, and the 
knowledge base is relatively comprehensive. Moreover, the knowledge base is 
derived from actual scenarios and is constantly updated as business changes 
and attack variants emerge.

5 We deploy servers in the provincial network gateway and the passed traffic 
will be mirrored to our servers without affecting/interfering with user services 
in the backbone path. Traffic collection lasts approximately two years. During 
6

this period, all traffic will go through the filters from about 20 security vendors 
5.1. Entire-spectrum family construction

We first develop the attack family construction over the entire-

spectrum DDoS fingerprint. After the partition search, all 89 types of 
DDoS are assigned to 4 families, as shown in Fig. 2. We term the 4 fami-

lies as “A: layer-4 above exploitation”, “B: server-insensitive TCP flood”, 
“C: server-responsive TCP flood”, “D: connectionless overflow”. Specifi-

cally, family A contains 13 types of DDoS which are all the exploitations 
above the transport layer. For example, the SSL/TLS supports secure 
encryption for the application layer and the layer-7 HTTP protocol. 
Noteworthy, the “tor” (Tor’s Hammer Attack) is also a layer-7 DDoS 
against web servers. The family D involves 19 kinds of attacks that 
belong to the connectionless overflow, such as ICMP unreachable and 
SNMP reflection. These attacks can be directly launched without estab-

lishing a connection like the TCP handshake. We will further explore 
families A and D in § 5.2 by analyzing subset attributes.

As for families B and C, they are TCP-based floods with different 
flag settings. Through family characterization, we find a significant dif-

ference between them with respect to the server response pattern. In 
family B (top part in Fig. 3), the victim has little feedback for the ag-

gressive behavior, e.g., almost no backward packets in the 42: psh-fin 
flood (the session is disconnected) and 83: urg-rst flood (the session 
is reset). However, the attacks from family C (bottom part in Fig. 3) 
will induce the server response, such as the backward RST packet in 7
and the handshake check (SYN & ACK) in 56. This inspires us to com-

bine backward packets to enhance DDoS defense, we discuss it in § 5.4. 
Interestingly, although these TCP Flag-related attacks are all Layer-4 at-

tacks in MAZEBOLT’s knowledge base, their traffic behaviors are very 
different.

To compare different family division methods, we chose Leiden and 
Louvain from community detection, as well as K-means and DBSCAN 
from unsupervised clustering to conduct experiments. We select modu-

larity as the metric given that it can consider the connection structure 
between the DDoS types. We set 𝑛clusters = 4 and 𝑚𝑖𝑛samples = 1 for 
K-means and DBSCAN, and the results (after exponential transforma-

tion) are summarized in Table 2. It displays that Leiden and Louvain 
outperform K-means and DBSCAN. Meanwhile, Leiden is slightly bet-

ter than Louvain. For the two clustering methods, they would be af-

fected by the hyperparameters. K-means achieve the highest modularity 

and finally vote to determine its label. This ISP dataset is mainly to expand the 

types of attacks to supplement MAZEBOLT.
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Fig. 3. The instances from families B and C.

Fig. 4. Further analysis of A based on 9-𝑡ℎ and 13-𝑡ℎ attributes.
Table 2

The modularity in different methods.

Modularity (𝑦 = 𝑒𝑥)

Leiden 0.99291 Louvain 0.99285

K-means (𝑛clusters = 4)

𝑃𝑡𝑟𝑎 = 25% 𝑃𝑡𝑟𝑎 = 50% 𝑃𝑡𝑟𝑎 = 75% 𝑃𝑡𝑟𝑎 = 100%
0.98925 0.99215 0.99200 0.99200

DBSCAN (𝑚𝑖𝑛samples = 1)

𝑒𝑝𝑠 = 2 𝑒𝑝𝑠 = 4 𝑒𝑝𝑠 = 6 𝑒𝑝𝑠 = 8
0.98883 0.99088 0.99094 0.99204

with the ratio 𝑃𝑡𝑟𝑎 = 50% of the training set, and remain stable when 
𝑃𝑡𝑟𝑎 = 75%,100%. Yet the DBSCAN performance improves with a larger 
cluster radius, reaching 0.99204 when 𝑒𝑝𝑠 = 8. Overall, the unsuper-

vised clustering tends to be less stable given the hyperparameters are 
non-trivial to determine. While the community detection algorithms are 
relatively suitable to perform the partition search tasks for DDoS family 
construction.

5.2. Subset attributes analysis

Besides analyzing the full spectrum, we also investigate the fine-

grained partitions based on some subset attributes. We explore the 
{request & response} for family A and the {packets v.s. temporal} 
distribution for family D. Fig. 4 displays that family A is further di-
7

vided into two groups based on the 9-th: 𝑡𝑙𝑠.ℎ𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒 and 13-th: 
ℎ𝑡𝑡𝑝.𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.𝑐𝑜𝑑𝑒 attributes. It is clear that the kernel density curve of 
the three attacks, “https”, “thc-ssl”, “ssl-renegotiation”, present similar 
trends in the 9-th attribute. While the other 10 DDoS types are grouped 
together given they hold the same distribution in the 13-th attribute. 
For the remaining two subfigures, the 13-th attribute for SSL/TLS and 
the 9-th attribute for the HTTP protocol, both show the one-point distri-

bution at 𝑥-axis = 0. Interestingly, we find “tor” could be characterized 
by the 13-th dimension in our experiments, but the 12-th dimension 
(ℎ𝑡𝑡𝑝.𝑟𝑒𝑞𝑢𝑒𝑠𝑡.𝑚𝑒𝑡ℎ𝑜𝑑) can not. It can be attributed to Tor’s Hammer At-

tack disassembling its request as invisible by the TCP segment. This 
again shows that backward packets can be combined to enhance de-

fenses, as we stated in § 5.1.

In Fig. 5, we depict the fine-grained partitions for family D based on 
the ratio between the attack time and duration in each snippet. For ex-

ample, consider the kernel density curve 𝑓 141(𝑥) of 141-th: 𝑡𝑖𝑚𝑒𝑠𝑢𝑚_1_0, 
the time ratio refers to the area under the curve after normalization, 

i.e., 𝑅 =
𝑠∑

𝑖=1
𝑥𝑖𝑓

141(𝑥𝑖). From the bottom part of Fig. 5, we can find 

that three groups show different curve trends. Subgroup 1 is relatively 
stable compared with subgroup 2 which present fluctuates violently, es-

pecially when 𝑡 ∈ [0, 2]. Particularly, subgroup 2 shows a higher peak 
value < 100𝑚𝑠, which indicates we should intercept these flows earlier 
(corresponds to early disconnection in § 5.4). Subgroup 3 is signifi-
cantly different from the others, manifested in that the ratios return to 
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Fig. 5. The {packets v.s. temporal} distribution of family D.

Table 3

The evaluations for guidelines of the supervised classification and unknown class detection. 𝑔4 (★) refers 
to our DDoS family.

Classification
𝑔1(𝑛𝑐=90) 𝑔2(𝑛𝑐=5) 𝑔3(𝑛𝑐=5) 𝑔4(𝑛𝑐=5) ★ 𝑔5(𝑛𝑐=2)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

LR 62.33 58.57 69.30 64.62 68.21 62.04 95.52 94.78 97.32 97.31

SVM 59.26 51.81 67.46 62.21 68.04 61.91 83.50 81.46 85.89 82.36

DT 78.96 75.02 89.45 88.98 89.57 89.15 99.91 99.89 99.91 99.90

RF 85.33 82.91 89.70 89.45 90.80 91.60 99.92 99.91 99.92 99.92

XGB 82.19 79.03 89.03 88.30 88.90 88.27 99.58 99.23 99.68 99.37

CNN 84.50 82.21 88.16 86.92 89.87 86.32 94.54 93.83 95.03 95.01

CMD 89.15 89.06 93.97 93.68 94.34 93.82 99.73 99.55 99.80 99.76

FS-Net 88.62 84.46 93.86 93.00 93.83 92.90 99.62 99.46 99.64 99.63

ERNN 88.81 84.69 93.21 92.87 93.88 93.02 99.68 99.49 99.71 99.65

Anomaly 
detection

𝑔1(𝑛𝑐=91) 𝑔2(𝑛𝑐=6) 𝑔3(𝑛𝑐=6) 𝑔4(𝑛𝑐=6) ★ 𝑔5(𝑛𝑐=3)

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Kitsune 76.25 73.02 78.23 76.16 80.07 79.92 97.66 96.25 98.31 97.95

Whisper 79.33 77.61 83.81 82.32 84.59 82.41 97.98 97.64 98.30 97.93

HyperVision 80.04 78.19 84.77 82.71 84.93 82.66 98.06 97.82 98.63 98.07
0 at 𝑡 = 10. It means that “ike”, “icmp-redir”, “dns-unk”, and “mam-

cache” four attacks are mainly concentrated in the first 10s.

5.3. Model guidelines

We perform evaluations for model guidelines, to show DDoS families 
could guide the granularity of classification/unknown class detection. 
As mentioned in § 3, both binary and attack-level multi-classification 
methods tend to be unsatisfactory. The binary classification approaches 
focus on differentiating “benign” and “attack”, the “malicious” label 
could not be directly used to take countermeasures by network opera-

tors. While model enabling identifying each class inevitably performs 
some accuracy loss when the number of classes increases. Our attack 
family is promising to realize the trade-off between accuracy and result 
availability.

5.3.1. Supervised classification guidelines

We conduct supervised model classification tasks using 9 common 
and well-known ML models, including logistic regression (LR), support 
vector machines (SVM), decision tree (DT), random forest (RF), xgboost 
(XGB), CNN (Ma et al., 2020), CMD (Zhao et al., 2023a), FS-Net (Liu 
et al., 2019), and ERNN (Zhao et al., 2023b). A total of 5 groups of 
8

experiments are performed, denoted 𝑔1 ∼ 𝑔5 respectively. Among them, 
𝑔1 conducts the multi-classification task with the number of classes 𝑛𝑐 =
90 and 𝑔5 develops the binary-classification task i.e., 𝑛𝑐 = 2. For 𝑔2 ∼ 𝑔4, 
all are the multi-classification with 𝑛𝑐 = 5. Specifically, 𝑔4 performs the 
family-level classification and 𝑔2 ∼ 𝑔3 are the controlled experiments 
that randomly assign 89 attacks into four labels.

The results are summarized in Table 3, the overall model perfor-

mance, is 𝑔1 ≪𝑔2, 𝑔3 ≪𝑔4, 𝑔5. We find that all models performed poorly 
in 𝑔1 due to the difficulty of massive (similar) categories. As we desired, 
𝑔5 achieves the best accuracy and F1 score because it only needs binary 
classification. Although all 𝑔2 ∼ 𝑔4 are 5-classification tasks, 𝑔4 is fun-

damentally different from the other two groups. The model effect in 𝑔4
clearly outperforms 𝑔2, 𝑔3, and tends to close to 𝑔5. For instance, the 
ACC of FS-Net is 93.86%, 99.62%, and 99.64% in 𝑔2, 𝑔4, and 𝑔5 respec-

tively. This means that family-level classification can indeed reconcile 
the two extremes, to achieve a trade-off between accuracy and practi-

cality (granularity).

5.3.2. Unknown class detection guidelines

We also evaluate three unknown class detection models, including 
Kitsune (Mirsky et al., 2018), Whisper (Fu et al., 2021), and Hyper-

Vision (Fu et al., 2023). Among them, Kitsune designs AutoEncoder 

to perform unknown class detection, while Whisper and HyperVision 
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Fig. 6. Illustration of the family-guided unknown class detection.

are both clustering-based, achieving feature extraction with frequency 
domain and flow interaction graphs respectively. We conduct known 
class classification as well as anomaly detection against unknown at-

tacks. The known classes refer to benign and 89 types of DDoS attacks, 
while the unknown classes reference the 18 new types of extended at-

tacks. Particularly, with the update of MAZEBOLT (MAZEBOLT, 2016), 
we further collect 18 new types of DDoS attacks, including brust-

mhddos, cfb-mhddos, get-mhddos, head-mhddos, even-mhddos, gsb-

mhddos, cookie-mhddos, cloudscraper http/s-get, cloudscraper http/s-

put, cloudscraper http/s-empty-post, cloudscraper http/s-head, cloud-

scraper http/s-delete, cloudscraper http/s-options, overload, urg-ack-

psh-syn, urg-ack-rst-syn, ack-rst-syn, ack-psh-rst. These new DDoS (un-

known attacks or variants of known attacks) are used here for unknown 
class detection evaluation, as well as for exploring the extensibility of 
the DDoS family in § 6.3. As the bottom of Table 3 shows (perform 
known class identification and unknown class detection), the model 
performance trends are consistent with supervised classification, i.e.,
𝑔1 ≪ 𝑔2, 𝑔3 ≪ 𝑔4, 𝑔5. This is expected, and we intuitively explain the 
unknown class detection guiding role of DDoS families in Fig. 6. In sub-

figure (b), each family forms a separate cluster so that new attacks can 
be easily distinguished. In contrast, random grouping causes the bound-

aries of known classes to be expanded in subgraph (a), which will make 
it difficult to identify unknown-class instances as outliers. Overall, our 
proposed DDoS family indeed provides model guidelines in terms of 
supervised classification or unknown class detection, to realize high-

accuracy and family-level attack identification.

5.4. Defense strategy optimization

The deploy countermeasures could be more practical for network 
operators, so we introduce here using attack families to facilitate to 
optimize defense strategies.

Backward Packet Statistics. Based on the above analysis, we ob-

serve that those DDoS attacks of family C will induce server responses 
and generate backward packets. This motivates us to develop a uni-

fied template to achieve defense against multiple attacks. As Fig. 7 (a) 
shows, we can count the backward packets that match the attacked re-

sponses, and use the destination IP (attacker) to update the rule table. 
This is very different from traditional filtering rules, which typically 
count forward packets. Particularly, such backward packet statistics 
have two benefits. (i) We can defend against more DDoS attacks using 
fewer rules because of the homogeneity of attacks’ backward pack-

ets. (ii) Backward packet statistics are more robust and enable coping 
with inapparent/potential attacks that disassemble requests into mul-

tiple segments. We explain these statements in detail next. For the 20 
types of attacks of family C, the typical approach requires constructing 
rules for each attack one by one.6 Based on our template of backward 
packet statistics, we can use only two rules to realize defense against 
20 types of DDoS attacks. In Fig. 7 (b), one rule counts backward RST 

6 For example, to defend against ACK-PSH-SYN flood, the typical rule could 
refer to counting the forward packets that carry the ACK, PSH, and SYN simul-

taneously. Furthermore, source IPs whose count results exceed the threshold 
9

are added to the blacklist and corresponding packets will be filtered.
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Fig. 7. The strategy optimization against family C.

Fig. 8. The strategy optimization against family A.

packets, and the other counts the packets that carry SYN and ACK si-
multaneously. The former can filter 15 attacks including ack, ack-fin, 
ack-psh, ack-psh-fin, ack-psh-syn, ack-psh-syn-fin, ack-syn, ack-syn-fin, 
urg-ack, urg-ack-fin, urg-ack-psh, urg-ack-psh-fin, urg-ack-psh-syn-fin, 
urg-ack-syn, and urg-ack-syn-fin. And the latter could filter 5 attacks, 
i.e., empty-connection, psh-syn, syn, urg-psh-syn, and urg-syn.

Moreover, backward packet statistics are robust. For the tor’s ham-

mer attack of family A, this attack disassembles TCP packets by setting 
segments and makes the request invisible/inapparent. Nonetheless, it 
will induce the “Bad Request” in backward packets (response), so that 
backward packet statistics could be more robust to perform detection, 
as shown in Fig. 8 (a).

Threshold Aggregation. As stated in § 1, the problem of slow reac-

tion in traffic scrubbing can be attributed to attack packets from various 
types but few volumes. To cope with this problem, it will be an effective 
solution to aggregate the filter threshold based on our DDoS families. In 
practice, the adaptive adversary could launch multiple kinds of attacks 
but keep the per-type attack volume small to avoid triggering the filters. 
An efficient way is to aggregate the statistics of similar attacks in the 
family so that monitor whether the sum of malicious packets reaches 
the threshold. As described in Fig. 7 (c), we provide the countermea-

sure instances for 20 types of attacks in family C. Similarly, we can 
also aggregate thresholds of HTTP exploitation requests from family A 
in Fig. 8 (b). By performing threshold aggregation for same-family at-

tacks, it can realize the quick reaction in traffic scrubbing (evaluations 
in § 5.5 will demonstrate this).

Early Disconnection. For family D, many overflow attacks concen-

trate a big fraction of traffic in the early stage. For instance, the packets 

of “dns-response”, “ipfragment”, “sip” attacks occupy > 90% duration 
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Fig. 9. The strategy for early disconnection.

Fig. 10. Compares traffic scrubbing effect of optimized strategy with Poseidon.

in 0 ∼ 100𝑚𝑠.7 To this end, we could set the strategy like Fig. 9 to reject 
the high-frequency packets thereby preventing adversaries from quickly 
overflowing bandwidth in a short period (e.g., ∼100 ms).

5.5. Traffic scrubbing evaluation

To further explore the traffic scrubbing effect, we carry out the inte-

gration test with the DPDK (Intel, 2014) data plane. As stated in § 5.4, 
we compare the optimized defense strategies based on our attack fami-

lies with the recent SOTA method named Poseidon (Zhang et al., 2020). 
The experiment develops four attack scenes. Scene 1: during 𝑡 ∈ [0, 12], 
15 types of DDoS involving backward RST packets from family A are 
launched, and Poseidon sets the corresponding strategies, yet we only 
install one rule to count the backward RST packets. This scenario is de-

signed to verify the insights that only a single rule can protect against 
multiple types of attacks after strategy optimization. Scene 2: during 
𝑡 ∈ [12, 25], the adversary exploits various HTTP-based attacks from 
family A including HTTP GET, Tor’s Hammer, etc. Poseidon routinely 
configures typical defense rules, while we propose to statistics back-

ward HTTP response packets. Scene 3: during 𝑡 ∈ [25, 38], a series of 
DDoS traffic from family D is generated to attack the victim. Note that 
the rule is based on the relative threshold within a sliding window, we 
set 0.1𝑠 and 1s for ours and Poseidon (reference the early disconnection 
in § 5.4). Scene 4: during 𝑡 ∈ [38, 50], the attacker mixes TCP-based and 
HTTP-based DDoS, and this setting evaluates the effect of threshold ag-

gregation. More details about filter rules can be found in the online 
repository.

Fig. 10 displays the traffic scrubbing effect in this multi-scene ex-

periment. Subfigure (a) shows the sender traffic, while subfigures (b) 
and (c) refer to the forwarding ratio of benign traffic in our defense and 
Poseidon. In scene 1, Poseidon starts to enforce discarding when the 
number of per-IP DDoS packets reaches the threshold, while our one 
rule is able to trigger the filter to defense. Meanwhile, our bandwidth 
curve presents faster restoration due to the count value in the single 
rule shared for these attacks. In scene 2, since Tor’s Hammer Attack 

7 This case displays that attacks from different protocol layers in MAZEBOLT 
10

may also have similar behaviors.
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Fig. 11. The time and memory overhead of rules for traffic scrubbing.

disassembles the requests by TCP segment, Poseidon can not identify 
this attack to present a obvious bandwidth preemption (i.e., can’t re-

vert to 100%). By contrast, our strategies perform more robust results, 
which illustrates the statistics of the backward packets is effective for 
defending against these attacks. In scene 3, we find that it is more 
practical to employ a short sliding window as the relative threshold, 
especially for attacks that are concentrated in the early stage. In scene 
4, this scenario is similar to scene 1, the difference is that more types 
of attacks are launched. Based on the threshold aggregation, our traffic 
scrubbing performance is still superior with respect to worst bandwidth 
congestion (84.32% and 62.5% in ours and Poseidon) and restoration 
time (∼5.1 s and ∼6.6 s in ours and Poseidon). Overall, the optimized 
strategies based on attack family insights could realize significant im-

provement for the DDoS mitigation effect.

Furthermore, we measure the introduced latency and memory over-

head for the original rule set and the optimized one. We first run the 
DPDK layer-3 forwarding program without any rules, then deploy the 
rule set and perform subtraction calculations to obtain the additional 
overhead introduced by the defense strategies. In Fig. 11, the origi-

nal rule set imposes ∼73 μs while the optimized only induces ∼60 μs. 
For the memory overhead, our optimized strategy also reduces ∼20% 
compared to the original. Therefore, in addition to speeding up the 
reaction and improving the effectiveness of traffic scrubbing, strategy 
optimization also facilitates simplifying the rule set and thereby reduces 
overhead.

6. Deep insights into family division

In this section, we intend to provide a series of deep insights into 
family construction with respect to stability, robustness, and extensibil-

ity.

6.1. Stability

Our proposed DDoS family construction roadmap involves extract-

ing traffic features, generating attack fingerprints, and executing com-

munity division. To explore the stability of the family division process, 
we develop here evaluation with imbalanced/balanced data and vari-

ous hyperparameters.

Imbalanced/Balanced Data. In previous evaluations of § 5, we 
directly perform family division based on the native data proportion, 
referring to Fig. 12 (a), the class with top-5 most samples are https, ack, 
ack-psh, ack-psh-fin, and ack-rst. For comparison, we also perform data 
balancing in Fig. 12 (b) to perform family construction. Whether it is 
the original data proportion or the balanced (Fig. 12), the inter-class 
weight (similarity) matrices have almost no difference, thereby gener-

ating the isomorphic family partitions. This is because the fingerprint 
generation of each class mainly includes probability distribution his-

togram calculation, kernel density estimation, and differential process 
(refer § 4.3). These steps are not affected by inter-class sample imbal-

ance. Then, subsequent graph generation and partition search will not 
be affected (refer § 4.4).

Hyperparameter Settings. Next, we construct DDoS family parti-

tions based on Leiden, Louvain, K-means, and DBSCAN with various 

parameter settings. Specifically, the initial_membership settings in Leiden 
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Fig. 12. The family division with different data proportions.
Fig. 13. Family division with different methods based on various hyperparam-

eter settings.

and Louvain both refer to the built membership from unweighted multi-

plex graphs. Given the Leiden algorithm involves the n_iterations param-

eter, we set it as {2, 3, 5, 10} respectively. For K-means, we set 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
= {2, 4, 6} and per-group involves 𝑃𝑡𝑟𝑎 = {25%, 50%, 75%, 100%}. 
For DBSCAN, we set 𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = {1, 5, 10} and per-group involves 𝑒𝑝𝑠
= {2, 4, 6, 8}. The random seeds of all methods are set as {1234, 2345, 
3456, 4567, 5678}. Multiple sets of experiments are performed, and the 
average and standard deviation of the modularity results are shown at 
the top of Fig. 13. Leiden and Louvain achieve better results compared 
to the clustering algorithms. For K-means and DBSCAN, the former is 
greatly affected by the 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 parameter, while the latter is always un-

satisfactory (manifested as the low modularity). Meanwhile, the bottom 
of Fig. 13 displays the class changes of each family, we observe that 
the trends of class changes are homogeneous with the modularity re-

sults. Among them, the family division results of the Leiden method 
are not affected even if change parameter settings, since the three-

phase partition search and cross-executed construction process (refer 
§ 4.4). Louvain method produces a few changes in per-family classes 
given it is sensitive to initial conditions and not very stable. Regard-
11

ing K-means and DBSCAN, their results were very volatile and highly 
Table 4

The family division results against evasion/insertion packets with diverse ratios.

Evasion Insertion Family A Family B Family C Family D

5% 0% ±0 ±0 ±0 ±0

10% 0% ±0 ±4 ±4 ±0

20% 0% ±0 ±5 ±5 ±0

0% 5% ±0 ±0 ±0 ±0

0% 10% ±0 ±3 ±3 ±0

0% 20% ±0 ±5 ±5 ±0

5% 5% ±0 ±0 ±0 ±0

10% 10% ±0 ±4 ±4 ±0

20% 20% ±0 ±5 ±5 ±0

correlated with the hyperparameters. Overall, clustering algorithms are 
severely affected by hyperparameters, and fine-tuning hyperparameters 
is challenging in practice. However, community detection algorithms 
are relatively more stable, which is one of the motivations (refer § 3) for 
leveraging community detection in the family construction roadmap.

6.2. Robustness

Furthermore, due to the rise of adversarial example techniques, we 
consider tampered traffic and evaluate its impact on family construc-

tion. Particularly, unlike image pixels (Zhao et al., 2023c) which can be 
arbitrarily tampered with, traffic samples need to comply with protocol 
standards and guarantee attack effectiveness. Recent researches (Wang 
et al., 2020c, 2021) show that using Selective Symbolic Execution (S2E) 
can automatically mine the available adversarial instances, including 
evasion and insertion packets. So-called evasion and insertion packets 
refer to the different packet sequences between the middlebox and end 
hosts due to discrepancies in protocol implementations, e.g., DPI mid-

dleboxes usually implement simplified state machines. Therefore, we 
consider evasion and insertion attacks since they are practical/represen-

tative. In Table 4, we conduct 9 groups of experiments with the diverse 
ratios of insertion and evasion, i.e., {5%, 10%, 20%}. Intuitively, the 
larger the proportion of attack packets, the greater the impact on the 
family division results. Nonetheless, families A and D are not affected 
in any way even with 20% attack packets. Further, we carefully analyze 
the affected parts of families B and C, to find the following phenomena.
(i) For the urg-ack attack from family C, if the ack flag is removed, it will 
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Fig. 14. Extending the family A and analyzing the TCP.flags.reset related di-

mensions.

become urg attack and fall into family B. (ii) For the ack-psh-rst-fin at-

tack from family B, if the rst flag is removed, it will become ack-psh-fin 
attack and fall into family C. (iii) For the urg-ack-psh attack from fam-

ily C, if the rst flag is added, it will become urg-ack-psh-rst attack and 
fall into family B. (iv) For the urg-syn attack from family C, if the fin 
flag is added, it will become urg-syn-fin attack and fall into family B.

(v) For the psh-syn attack from family C, if the fin flag is added, it will 
become psh-syn-fin attack and fall into family B. These five situations 
correspond to the changes of five classes between families B and C in 
the Table 4. We admit that adversarial traffic samples indeed affect the 
results of the family division, yet we would like to argue this impact is 
not very serious. Given the changes usually involve subtle changes be-

tween similar attacks, the benefits of the DDoS family such as model 
guidelines and defense strategy optimization are not fundamentally in-

fluenced.

6.3. Extensibility

In the real world, the emergence of new DDoS attacks is inevitable, 
and so we explore here the extensibility of the DDoS family. There are 
18 new DDoS attacks collected for unknown attack detection evalua-

tion in § 5.3.2, and we use them for family extension research. First, 
we extract features and produce fingerprints based on the traffic of 18 
types of attacks. This process is incremental, i.e., does not need to re-

calculate previously existing attack fingerprints. Then, we update the 
similarity matrix, which involves calculating the distance of new classes 
from previous classes. This update is also incremental and only needs 
to be expanded based on the original matrix. Subsequently, the par-

tition search is performed to achieve family division. This step is not 
incremental and requires searching partitions for all types of attacks. 
However, the algorithm execution time takes only about a few seconds, 
this is acceptable especially compared with expert analysis.

After the above pipeline, among the 18 types of attacks, urg-ack-

psh-syn is assigned to family C; urg-ack-rst-syn, ack-rst-syn, and ack-

psh-rst are assigned to family B; the other 14 attacks are all assigned 
to family A. We continue to analyze family A, specifically, we se-

lect the TCP.flags.reset related dimensions and calculate 𝓁2 distance 
to generate similarity matrix. As shown in Fig. 14, those attacks of 
family A could be divided into subfamilies 1 and 2. The subfamily 2 
includes 7 types of mhddos-initiated attacks, i.e., brust-mhddos, cfb-

mhddos, get-mhddos, head-mhddos, even-mhddos, gsb-mhddos, and 
cookie-mhddos. The attacks of subfamily 2 all involve RST flag in traffic 
content, this is because the MHDDoS (MHDDoS, 2023) tool is designed 
to forcibly cut off the connection to the victim server to mimic normal 
connection termination. Therefore, compared Cloudscraper-related at-

tacks (Cloudscraper, 2019), MHDDoS-generated DDoS presents greater 
12

changes from the original family A. Overall, family expansion is feasible 
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Fig. 15. The hierarchical construction of the attack family.

and practical, and most steps are incremental. A clear characteristic is 
that different requirements will determine the granularity of the family 
division, thus it is promising to develop customized family construction, 
we discuss them in § 7.

7. Discussion

Customized Granularity in Hierarchical Construction. In § 5.1

and § 5.2, we display that the proposed DDoS family partition can 
perform at different granularities with different feature dimensions. To 
achieve greater versatility in real-world scenarios, we could develop a 
hierarchical construction process to adapt to the various requirements, 
as shown in Fig. 15. The top tends to portray the traffic pattern, while 
the bottom focuses more on subtle features. For example, the attacks of 
family A are all layer 4-above exploitations, while they can be further 
divided into SSL/TLS-based and HTTP-based DDoS according to differ-

ent field representations. The service-centric users who aim to improve 
DDoS mitigation may only need coarse-grained family information, yet 
the security vendors concerned about attack investigation could prefer 
fine-grained reports. Therefore, building a customized scheme for fam-

ily divisions benefits widespread promotions to various users.

Real-World Deployment. Based on insights from the DDoS family, 
there are multiple deployment models for defense strategy optimization 
in practice. For instance, the Cloud Security Service Providers (CSSPs, 
e.g., Cloudflare, Arbor, Akamai) play a vital role in securing today’s In-

ternet from DDoS attacks. Considering the customized requirements of 
different users, the corresponding rule configuration of the family divi-

sion could be deployed at the CSSPs or the victim’s ISP. This deployment 
model facilitates the market management (e.g., add constraints to the 
output of the family partition results) and rapid expansion (e.g., adapt 
to emerging attacks) of security services.

Limitations and Future Works. Our work has a few limitations. 
First, the customized granularity productions depend on the needs of 
large-scale users, the future work could consider a requirement collec-

tion and feedback mechanism. Then, with emerging more categories, 
the computational complexity may increase such as fingerprint gener-

ation and partition construction. Therefore, we would explore which 
calculation processes could run in parallel to maximize efficiency to 
cope with more DDoS types. Finally, minimizing training datasets based 
on constructed families is also a promising direction given it is unre-

alistic to collect samples of all classes. As part of future work, we will 
extract the representative categories to characterize their family thereby 
lightweight the dataset scale.

8. Conclusion

In this paper, we re-examine the current DDoS landscape and pio-

neer a new direction of attack family to cope with massive types. Our 
proposed roadmap includes traffic pattern characterization, attack fin-

gerprint production, cross-executed family division, etc. Based on the 
built family, we discover a series of deep insights into attack behavior. 
For instance, we find that counting the backward packets could real-
ize a more robust defense effect, which is very different from previous 
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solutions. Meanwhile, the attack family benefits the ML task by recon-

ciling the two extremes between binary classification and attack-level 
multi-classification. Furthermore, we perform the defense strategy op-

timization after inspiring by family partitions. With the practice evalu-

ation on the testbed, we demonstrate our traffic scrubbing performance 
significantly outperforms the SOTA DDoS mitigation system in terms of 
worst bandwidth congestion and restoration time. Particularly, only us-

ing one rule could defend against 15 types of attacks. Finally, we discuss 
hierarchical-manner family construction to achieve customized granu-

larity for widespread applications.
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