
CAShift: Benchmarking Log-Based Cloud Attack Detection
under Normality Shift
JIONGCHI YU, Singapore Management University, Singapore
XIAOFEI XIE, Singapore Management University, Singapore
QIANG HU∗, Tianjin University, China
BOWEN ZHANG, Singapore Management University, Singapore
ZIMING ZHAO, Zhejiang University, China
YUN LIN, Shanghai Jiao Tong University, China
LEI MA, University of Tokyo, Japan and University of Alberta, Canada
RUITAO FENG, Singapore Management University, Singapore and Southern Cross University, Australia
FRANK LIAUW, Government Technology Agency of Singapore, Singapore

With the rapid advancement of cloud-native computing, securing cloud environments has become an important
task. Log-based Anomaly Detection (LAD) is the most representative technique used in different systems
for attack detection and safety guarantee, where multiple LAD methods and relevant datasets have been
proposed. However, even though some of these datasets are specifically prepared for cloud systems, they
only cover limited cloud behaviors and lack information from a whole-system perspective. Another critical
issue to consider is normality shift, which implies that the test distribution could differ from the training
distribution and highly affect the performance of LAD. Unfortunately, existing works only focus on simple
shift types such as chronological changes, while other cloud-specific shift types are ignored, e.g., different
deployed cloud architectures. Therefore, a dataset that captures diverse cloud system behaviors and various
types of normality shifts is essential.

To fill this gap, we construct a dataset CAShift to evaluate the performance of LAD in cloud, which considers
different roles of software in cloud systems, supports three real-world normality shift types (application shift,
version shift, and cloud architecture shift), and features 20 different attack scenarios in various cloud system
components. Based on CAShift, we conduct a comprehensive empirical study to investigate the effectiveness of
existing LAD methods in normality shift scenarios. Additionally, to explore the feasibility of shift adaptation,
we further investigate three continuous learning approaches, which are the most common methods to mitigate
the impact of distribution shift. Results demonstrated that 1) all LAD methods suffer from normality shift
where the performance drops up to 34%, and 2) existing continuous learning methods are promising to address
shift drawbacks, but the ratio of data used for model retraining and the selection of algorithms highly affect
the shift adaptation, with an increase in the F1-Score of up to 27%. Based on our findings, we offer valuable
implications for future research in designing more robust LAD models and methods for LAD shift adaptation.

∗Corresponding Author.

Authors’ Contact Information: Jiongchi Yu, Singapore Management University, Singapore, Singapore, jcyu.2022@phdcs.
smu.edu.sg; Xiaofei Xie, Singapore Management University, Singapore, Singapore, xfxie@smu.edu.sg; Qiang Hu, Tianjin
University, Tianjin, China, qianghu@tju.edu.cn; Bowen Zhang, Singapore Management University, Singapore, Singapore,
bwzhang@smu.edu.sg; Ziming Zhao, Zhejiang University, Hangzhou, China, zhaoziming@zju.edu.cn; Yun Lin, Shanghai
Jiao Tong University, Shanghai, China, lin_yun@sjtu.edu.cn; Lei Ma, University of Tokyo, Tokyo, Japan and University
of Alberta, Alberta, Canada, ma.lei@acm.org; Ruitao Feng, Singapore Management University, Singapore, Singapore and
Southern Cross University, New South Wales, Australia, ruitao.feng@scu.edu.au; Frank Liauw, Government Technology
Agency of Singapore, Singapore, Singapore, Frank_LIAUW@tech.gov.sg.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE076
https://doi.org/10.1145/3729346

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0002-2888-4499
HTTPS://ORCID.ORG/0000-0002-1288-6502
HTTPS://ORCID.ORG/0000-0002-8251-1669
HTTPS://ORCID.ORG/0009-0009-7513-2319
HTTPS://ORCID.ORG/0000-0003-1455-4330
HTTPS://ORCID.ORG/0000-0001-8255-0118
HTTPS://ORCID.ORG/0000-0002-8621-2420
HTTPS://ORCID.ORG/0000-0001-9080-6865
HTTPS://ORCID.ORG/0009-0009-1462-9794
https://orcid.org/0000-0002-2888-4499
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-8251-1669
https://orcid.org/0009-0009-7513-2319
https://orcid.org/0000-0003-1455-4330
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0002-8621-2420
https://orcid.org/0000-0001-9080-6865
https://orcid.org/0009-0009-1462-9794
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729346


FSE076:2 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

CCS Concepts: • Security and privacy → Intrusion/anomaly detection and malware mitigation; •
Software and its engineering→ Contextual software domains.

Additional Key Words and Phrases: Cloud Native Systems, Software Vulnerabilities, Normality Shift, Anomaly
Detection, Intrusion Detection, Log Analysis

ACM Reference Format:
Jiongchi Yu, Xiaofei Xie, Qiang Hu, Bowen Zhang, Ziming Zhao, Yun Lin, Lei Ma, Ruitao Feng, and Frank
Liauw. 2025. CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift. Proc. ACM
Softw. Eng. 2, FSE, Article FSE076 (July 2025), 23 pages. https://doi.org/10.1145/3729346

1 Introduction
Cloud-native infrastructures featured with Kubernetes [40] and Docker [19] have rapidly emerged
as the predominant choice for modern cloud computing architectures, subsequently becoming the
trending foundational infrastructure for hosting numerous software systems such as Software as a
Service (SaaS) platforms. Existing study reports that Kubernetes has a commanding 92% market
share among container orchestration tools used by businesses throughout the world [16] and
over 50% of Fortune-100 companies have adopted Kubernetes [50]. Despite the success, various
security-critical attacks are key factors limiting the reliable use of cloud systems, such as the severe
cloud vulnerabilities CVE-2024-21626 [15] that can result in container escape due to mishandling
of file descriptor isolation. Therefore, ensuring the security of cloud systems is crucial.

Log-based Anomaly Detection (LAD) is a popular and effective method to guarantee the security
of software-intensive systems. In real-world practice, system maintainers typically deploy LAD
systems to monitor all tenant services for detecting threats within the cloud system that hosts
various user applications. LAD systems collect and analyze system logs to train models that define
normal operational behavior and identify anomalies. Logs that significantly differ from the normality
distribution are flagged as potential system anomalies or vulnerabilities exploited by attackers.

However, although many LAD methods [22, 23, 47, 58, 63] have been proposed with promising
detection performance in many existing datasets [29, 67], few of them [23, 24] have focused
on attacks in container clouds in a narrow scope (e.g., Docker). Besides, most of the proposed
LAD methods are primarily evaluated using in-distribution test cases which follow the same data
distribution as the training data. The continuous updating characteristics present in real-world
software deployment environments, which result in changes to the data distribution of test data over
time (known as normality shift [30]), affecting the performance of LAD methods, are overlooked.
Cloud systems frequently undergo updates that can lead to shifts in system behaviors, which in
turn affect the characteristics observed in system logs. Specifically, as software is continuously
integrated, the features of normal logs collected to train normality models may experience shifts
due to changes in software behavior. These changes include variations in function call types,
frequencies, orders, and even noises of environmental components, as new software versions often
behave differently compared to the previous version. As a result, the usefulness of existing LAD
methods in such scenarios is unclear. Commonly, system maintainers employ continuous learning
periodically to adapt LAD systems to new log characteristics and mitigate the normality shift.
Some LAD datasets have been constructed considering simple normality shift scenarios. For

example, Anoshift [20] divides the Kyoto-2006+ traffic dataset [54] into three chronological orders
and explores the performance of different LAD methods on shifted data. LogHub [36, 67] has
released two versions of datasets to include more applications and logs collected at different times
to consider distribution shift scenarios. However, directly applying these datasets to train LAD
models for cloud systems is challenging. ❶ Unsuitable data source. Network traffic and system logs,
which are the major log types in existing datasets, are orthogonal log sources. Traffic datasets

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.

https://doi.org/10.1145/3729346


CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:3

are not suitable for cloud system attack detection as characteristics apparent in system logs may
not be detectable through pure network traffic analysis, while the reverse is not necessarily true.
❷ Limited attack scenarios. Prior datasets focus on application-level logs and ignore system-level
logging behaviors. Therefore, vulnerabilities (attacks) in system-level (e.g., kernel or container
systems) will be overlooked when using these datasets to train LAD models and lead to security
issues. ❸ Lack of the entire cloud system consideration. In container environments, external systems
are transparent to the container user, resulting in events occurring outside of the Open Container
Initiative (OCI) runtime not being captured by the log monitoring of a container. This oversight
results in such datasets [23, 29] lacking a comprehensive examination of the entire cloud system
service and, correspondingly, missing higher-level cloud system vulnerabilities in the test set,
including those related to Container Runtime Interface (CRI) runtimes [11, 14] and Kubernetes
system vulnerabilities [12, 13]. ❹ Insufficient shift types. Existing works focus only on a monotonous
shift type, e.g., time shift, and lack a systematic investigation and discussion on other real-world
shift types specific to LAD application scenarios, such as cloud architecture shift.
To address the above challenges, in this work, we construct a normality shift-aware dataset

specifically designed for cloud attack detection, named CAShift. Specifically, CAShift thoroughly
considers the crucial role of cloud-native system components in system call logs and includes a
broader range of software vulnerabilities and attack types. CAShift encompasses container runtime
vulnerabilities and cloud system attacks, which are overlooked in existing datasets. Additionally,
CAShift supports multiple types of real-world normality shift, which could significantly affect LAD
performance. In total, CAShift consists of 27,000 normal and 2,500 attack system call traces, 4.5
billion log entries, and 20 different attack scenarios, requiring more than 90 hours of recording.
Based on our collected dataset, we conduct a comprehensive empirical study to investigate the
effectiveness of existing LAD methods on cloud systems and normality shift scenarios. In addition
to existing LAD methods [22, 23, 47, 58, 63], we design semantic-aware embedding methods for
system call logs and implement AE and VAE models for evaluation. Our study aims to answer the
following research questions:
RQ1: How effective are LAD methods in detecting attacks in cloud systems? We first

explore whether existing LAD methods can detect attacks in cloud systems through system call
logs under in-distribution scenarios. The results will ❶ answer if we can directly employ LAD
methods proposed for other systems to cloud systems, and ❷ be used as baselines to demonstrate
the influence of normality shift on LAD methods.

RQ2: How effective are LAD methods under normality shift? In this research question, we
explore how well existing LAD methods handle normality shift. We evaluate the performance of
LAD models trained with in-distribution data on our prepared three types of shift datasets for each
LAD baseline.
RQ3: Can continuous learning methods help with LAD shift adaptation? In real-world

production environments, cloud systems can generate a large volume of logs in a short period,
making it challenging to label all logs in shift scenarios as new training data for shift adaptation. To
this end, existing works [3, 27] utilize continuous learning algorithms to select the most appropriate
samples to retrain models for shift adaptation. We explore the effectiveness of three representative
continuous learning methods (DeepGini, ZOL, KM-ST ), along with a random selection baseline for
evaluating LAD shift adaptation.
Contributions. In summary, this paper makes the following contributions:

• We introduce the first LAD dataset specifically designed for cloud systems named CAShift, which
considers different software roles in cloud systems and supports multiple types of normality

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:4 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

shift. Compared to existing LAD datasets, CAShift encompasses extensive cloud native systems
data, together with detailed analysis of the cloud attacks collected.

• We conduct a comprehensive empirical study to investigate the capabilities of existing LAD
methods in cloud systems under normality shift. We find that 1) existing LAD models all
experience a performance decrease in shift scenarios, with an average reduction of 17% in
F1-Score. 2) Continuous learning methods can help enhance the detection capabilities of LAD
models under shift conditions, achieving up to 27% in F1-Score improvement.

• We provide in-depth discussions for future research directions on LAD based on our experimental
results. To benefit future research, we make our dataset and source code publicly available [2].

2 Background and Related Works
In this section, we introduce the background related to this work, including attacks in cloud systems,
LAD, distribution shift in LAD, and continuous learning for shift adaptation.

...

CRI Runtime

Kubernetes API ServerAdmin Command
(e.g., kubectl)

Scheduler

Controller

Storage

Kubernetes Plugins

...

Pod 1
OCI Runtime

Container 1

OCI Runtime

Container 2

Kubelet

CRI Plugins

User Command
(e.g., bash)

App 1

...User Operation
(e.g., web click)

...

Work Node 1 Work Node 2

User/Attacker Input Cloud System

Kube-proxy
Orchestration Layer

CRI Runtime Layer

OCI Runtime Layer

Container Process

Cloud Application
Pod 2 Pod 3

Master Node

Fig. 1. Common attack surfaces in cloud systems.

2.1 Attacks in Cloud Systems
Figure 1 illustrates common attack surfaces in cloud-native systems and their associated attack
paths. A cloud system typically refers to a cloud orchestration framework deployed on physical
machines, such as Kubernetes [40]. The cloud orchestration relies on cloud container runtimes [60]
to function, which can be subdivided into CRI runtimes (e.g., containerd [7]) that manage images
and container resources, and OCI runtimes (e.g., runc [49]) responsible for directly managing
container instance processes and lifecycle. Cloud users usually interact with created containers,
deploying various applications (e.g., WordPress) to utilize cloud services. Despite the isolation
provided by multiple cgroups and namespaces between the host system and user containers, user
programs usually eventually run through the host kernel.
From an attacker’s perspective, the entire cloud service system presents multiple potential ex-

ploitation entries. Specifically, vulnerabilities or misconfigurations in cloud applications deployed

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:5

by users could allow attackers to gain command execution privilege within the application con-
tainer (e.g., Remote Code Injection vulnerabilities). Once the attacker can execute commands,
vulnerabilities in the cloud container runtime can be exploited to escape to the upper cloud orches-
tration environment or even the host environment, including the popular runc escapes [10, 15].
In the host and cloud orchestration environments, vulnerabilities in the cloud system could be
exploited to allow attackers to gain root privileges, including vulnerabilities in various cloud system
components such as ingress [12] and the cloud system itself [13]. As attackers may employ different
strategies at different stages of the attack process to acquire various resources, these activities vary
significantly at the system call log level. This motivates us to construct a dataset that considers the
collection of attack logs for vulnerabilities in different components and architectural components
of cloud computing systems.
The goal of LAD for cloud systems is to distinguish normality logs and anomaly logs given

a sequence of logs in cloud systems. A good LAD method should have three properties ❶ high
accuracy, which is the ability to precisely identify normal and attack logs, ❷ flexible adaptability,
which indicates the robustness of detecting performance in various cloud computing backgrounds,
and ❸ scalability, which refers to the capability to process the large volume of cloud system call
logs without compromising on the speed or accuracy of threat detection.

2.2 Log-Based Anomaly Detection Methods
The task of LAD involves developing a model to predict whether incoming test logs are normal
or anomalous. Traditional methods often leverage statistical techniques such as SemPCA [58]
to transform high-dimensional log event features into a lower-dimensional subspace, enabling
efficient distinguishing between normal and anomalous patterns. Advanced methods such as deep
learning-based methods [42, 63, 64, 66] typically train the model to detect unknown threats that
deviate from normal behaviors. These approaches can be further divided into two categories based
on the representation of model output:
Reconstruction-Based Method. During training, this type of LAD methods reconstructs the
input logs with the model and compares them with the initial input, aiming to minimize the
reconstruction error of normal logs. At the test time, given a log sample, if the reconstruction loss
exceeds a preset detection threshold, the log will be considered anomalous. Therefore, generative
models such as AutoEncoder (AE) [23] and Generative Adversarial Networks (GAN) [61] are
frequently used as backbone models for these methods. Specifically, CHIDS [23] processes system
call log sequences into syscall sequence graphs and uses the frequency of each system call as metrics
for AE to learn from. To incorporate the semantic information of system calls, we implemented
a standard AE model for LAD, which involves initially embedding all log information using a
BERT [17] tokenizer. Subsequently, the class token of the embedded log is used as a learning
input for the AE. Considering the different distributions in the LAD scenario, we also implement
the Variational AutoEncoder (VAE) [38] model as a baseline LAD method, which integrates the
Kullback-Leibler (KL) divergence between the hidden layers and the initial input embedded log
into the reconstruction learning loss to make the learned data distribution more robust.
Prediction-Based Methods. These methods learn to maximize the probability of predicting the
next log in normal log sequences [22, 41, 65]. Consequently, the higher the normality prediction
value for a log, which is the output of the model, the more likely it is considered normal. Conversely,
if the prediction value falls below a preset detection threshold, it will be predicted as anomalous.
Many unsupervised models have been proposed, including DeepLog [22], LogAnomaly [47], and
LogAD [63]. Among them, sequential DL models such as Long Short-Term Memory (LSTM), are
often used as backbone models. Specifically, DeepLog utilizes the LSTM model to learn normal
operations by predicting the next log event based on preceding events. Meanwhile, LogAnomaly

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:6 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

builds on DeepLog by designing a synonyms-based method to represent log templates as seman-
tic vectors, which introduces quantitative information to enhance anomaly detection. LogAD
incorporates knowledge bases to integrate operational expertise in log preprocessing and apply
ensemble prediction algorithms for different potential anomaly patterns, including keyword discrep-
ancies and variable distributions. Existing research, such as LogRobust [62], also adopts supervised
learning methods which require a large amount of labeled data to train models. Consequently,
semi-supervised methods are proposed to utilize a subset of the training set containing labeled
normal log data and cluster the unlabeled logs for LAD. For example, PLELog [59] uses the GloVe
global vector-based pre-trained language model [52] to represent each word in log events and
constructs the model using an attention-based bidirectional GRU [5] to predict the incoming logs.

2.3 Distribution Shift in LAD
Distribution shift [39], which indicates the test distribution is different from the training distri-
bution, is a common problem in machine learning. In computer vision [31, 46], natural language
processing [28, 39], and code learning [34, 35] fields, distribution shift has been widely studied to
explore the generalization ability of machine learning models. In the field of LAD, as discussed
in existing works [20, 30, 35], distribution shift issues also harm the reliable usage of existing
LAD methods in real-world scenarios. As time progresses, new normality features may differ from
features learned by LAD models, leading to the distribution drift problem. Such drift behavior
frequently happens in cloud and container systems due to their designed principle of “build once,
run anywhere" which allows minor updates to be continually implemented across cloud systems.
These normality shifts can negatively impact to performance of trained LAD models.

Although most previous datasets have overlooked the issue of distribution shifts within their col-
lection paradigms, typically maintaining a single release without considering the distribution shifts
introduced over time, some datasets have acknowledged such problems and made improvements
to their collected dataset. For instance, Anoshift [20] categorizes the yearly updated data from the
Kyoto-2006+ dataset [54] into three chronological shift patterns to evaluate the performance of
network traffic-based LAD. LogHub has also expanded its collected datasets with more covered
applications in LogPub [36] and provided new versions for some of the sub-datasets with new
collected time versions and pre-processed templates (e.g., Hadoop, HDFS). Different from the above
works, we design three novel normality shift types and construct our dataset accordingly.

2.4 Continuous Learning for Shift Adaptation
Continuous learning is a process for machine learning models to continuously learn from new data
and update their knowledge base. This approach allows models to adapt to new circumstances or
data, thus serving as effective methods [3, 27, 35, 44] for enhancing model performance with new
data distribution. Specifically, continuous learning involves two steps: 1) collecting new normality
logs in shift distributions, and 2) retraining the model using the collected cases. In practice, system
operators routinely update the LAD models to adapt emerging log patterns [30]. However, as the
new log samples are normally unlabeled and could contain attacks, data annotation is a necessary
step. Unfortunately, labeling log data is time-consuming and labor-intensive. Therefore, in this
work, we consider employing label-efficient continuous learning methods to help shift adaptation
for LAD methods. Four methods, namely DeepGini, Zero-Order Loss (ZOL), K-Multisection Strategy
(KM-ST), and Random are included in our study. DeepGini [27] prioritizes test cases based on the
Gini impurity of model outputs and selects cases that exhibit higher uncertainty for the model
retraining process. ZOL utilizes loss information to select test cases that are more likely to result
in misclassification. To address the imbalanced loss distribution issue in ZOL, which could lead
to unfair selection of test cases through pure sequential selection, KM-ST [3] divides test cases

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:7

Shift Train Data

LAD Model

Shift System Logs

Train Data

Shift Test Data

Test Data Evaluate

Retrained
LAD ModelEvaluate

RQ1 & RQ2:
LAD Evaluation

RQ3: Continous
Learning

RetrainNormality Shift

Updating
Cloud Service

Kubernetes Engine

CRI Runtime

OCI Runtime

Cloud Applications

Cloud System

Dataset
Construction

System Logs

Change Applications
Update Application Version
Migrate Cloud Architecture

DeepGini
ZOL
KM-ST
Random

Fig. 2. Overview of our benchmarking framework.

into several distinct groups to ensure a balanced and comprehensive coverage across different
input features. We also incorporate the Random Selection method, which randomly selects logs for
continuous learning as a baseline. These methodologies are employed to select a certain proportion
of shift logs for LAD model retraining, thereby facilitating adaptation to shift scenarios.

3 CAShift: Benchmarking for Cloud Attack Detection
In this section, we introduce the construction process of our benchmark datasets, which includes
the data collection process and the quantitative analysis of shift scenarios. The overview of our
collection framework is shown in Figure 2.

3.1 Normality Shift
In total, three types of shift scenarios in cloud environments have been considered in CAShfit:
Application Shift, Version Shift, and Cloud Architecture Shift.
• Application Shift comes from the different behaviors of different applications on the cloud. In
practice, users often deploy multiple applications that are functionally different on the cloud
side over time to meet their business needs. The logical changes within the applications can
lead to variations in the invoking system functions, which introduce the application shift.

• Version Shift is introduced by the new behaviors that come with new versions of software. Major
version updates to many applications can lead to significant changes in functionality, which in
turn affect the logic and sequence of system functionality usage.

• Cloud Architecture Shift is a cloud system-specific shift type. Both CRI runtimes and OCI runtimes
are regulated with their respective protocols, which have various implementations. For instance,
containerd and cri-o are all CRI runtimes, and runc, gvisor, kata-containers, and crun all adhere to
the OCI runtime specification [48]. These runtimes exhibit significant differences at the system
call level due to their internal characteristics in handling system calls for containers. Specifically,
sandbox-based runtimes like gvisor and kata-containers implement system call wrappers for
security concerns, whereas runtimes like cri-o generate many system call logs inherent to their
runtime operation. Consequently, different choices in cloud architecture can lead to varied
behaviors in cloud system call logs.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:8 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

3.2 Dataset Collection
For the data construction, we follow existing works [23, 45] and collect system logs from three
highly influential open-source applications (WordPress, Joomla, and Jinja). In addition to the normal
logs, CAShift contains attack logs based on existing CVE vulnerabilities found in these three
applications. Considering shift scenarios, we collect logs fromWordPress and Joomla under their
three different versions and three different cloud container runtime environments. We also include
20 types of CVE vulnerabilities from various components of cloud-native systems. We replay these
vulnerabilities in their respective affected components and versions to collect the corresponding
logs. After that, the capability of LAD methods in handling normality shift is evaluated by the
collected datasets. Furthermore, continuous learning methods are employed to select important
data to adapt LAD models to new data distributions.
As discussed in Section 2, we focus on evaluating LAD for detecting cloud attack/anomaly

behaviors in cloud systems under normality shift scenarios. Based on our shift definition, we
construct our dataset CAShift, which supports three types of shift. Following previous works [23, 29],
we select Kubernetes [40] as the base engine for the entire cloud system and adopt Sysdig [55]
to collect system call logs. For application shift, we deploy three applicationsWordPress, Joomla,
and Jinja, on cloud systems and capture both normal and attack logs from the system for our
dataset. Specifically, we collect normal behaviors and gather 10 different vulnerabilities triggered by
internal bugs in these applications, which are summarized in Table 1, to replay for attack logs. For
the version shift, we collect logs of WordPress in three stable versions including 4.8 (released on 08
Jun 2017), 5.6 (released on 08 Dec 2020), 6.2.1 (released on 29 Mar 2023), and Joomla in versions 3.7,
4.2.7 and 5.1. For the cloud architecture shift, we deployWordPress and Joomla on different container
runtime systems and collect logs accordingly. Three most popular container runtime combinations,
containerd (CRI) - runc (OCI), containerd (CRI) - gvisor (OCI) and cri-o (CRI) - runc (OCI) are considered
in CAShift. We also assemble 10 different system-level vulnerabilities (e.g., Kubernetes, container
runtimes, kernel) to enrich the diversity of CAShift in detecting vulnerabilities across various
components in cloud computing environments. In total, CAShift consists of 27,000 normal and
2,000 attack system call traces with 4.5 billion log entries, and 20 different attack scenarios (with
CVEs), assembling to more than 90 hours of recording.
Normal Log Collection. To collect normal behaviors of cloud systems, we follow previous
works [29, 43] and utilize Selenium [53] to simulate normal user interactions on deployed cloud
applications. Specifically, we simulate all possible user actions, including random link walks,
comment submissions, and user panel logins (non-administrative). The authors manually test
the application and design different automated simulation schemes based on the application’s
functionalities. The system call logs are then collected as the normal behavior of cloud systems.
Attack Log Collection. The cloud attack vulnerabilities collected in CAShift are categorized into
two major types: cloud application vulnerabilities and cloud system vulnerabilities. We follow a
unified workflow to gather the attack behaviors. Specifically, for application attacks, we 1) explore
vulnerabilities within the selected applications (i.e., WordPress, Joomla, Jinja2) from the MITRE
CVE Database [20] and initially gather 11,505, 1,325, and 23 CVEs, respectively. 2) We manually
review these CVEs and filter out dependencies or plugin-related CVEs, leaving 96 CVEs. 3) We rank
the CVEs by their CVSS scores to identify the most impactful vulnerabilities, while also considering
diversity in our selection process. For each distinct CWE category, we select only one representative
attack. Consequently, we assemble 10 application-level CVEs in our dataset. A similar workflow is
applied to collect 10 cloud attacks regarding identified cloud system components (i.e., Kubernetes,
container, cri-o, runC, gvisor, Linux kernel).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:9

Table 1. Collected vulnerability dataset.

Cloud Attacks CVE/CWE ID Vulnerability Info CVSS Bug Application Bug Version

Application Level

CWE-400 Denial of Service (DoS) - WordPress < 5.3
CVE-2016-10033 Remote Code Execution (RCE) 9.8 WordPress < 5.2.18
CVE-2019-17671 Unauthorized Private Content Access 5.3 WordPress < 5.2.4
CVE-2017-5487 Unauthorized User Enumeration 5.3 WordPress 4.7.1
CVE-2016-4029 Server-Side Request Forgery (SSRF) 8.6 WordPress < 4.5
CVE-2023-23752 Improper Access Check 5.3 Joomla 4.0.0 - 4.2.7
CVE-2021-23132 Directory Traversal RCE 7.5 Joomla 3.0.0 - 3.9.24
CVE-2017-8917 SQL injection 9.8 Joomla < 3.7.1
CVE-2015-8562 Object Injection RCE 7.5 Joomla < 3.4.6
CVE-2019-8341 Server Side Template Injection (SSTI) 9.8 Jinja2 2.10

System Level

CVE-2019-5736 runC Overwrite Container Breakout 8.6 runC 1.0-rc6
CVE-2021-30465 Race-Based Container Breakout 8.5 runC < 1.0.0-rc95
CVE-2024-21626 Internal File Descriptor Leak 8.6 runC < 1.1.11
CVE-2020-15257 Privilege Escalation via API Socket 5.2 containerd < 1.3.9
CVE-2022-1708 Memory or Disk Space Exhaustion 7.5 cri-o < 1.19.7
CVE-2020-14386 Privilege Escalation via Memory Corruption 7.8 Kernel (gVisor Sentry) < 5.9-rc4
CVE-2024-1086 Use After Free (UAF) Privilege Escalation 7.8 Kernel 5.14 - 6.6
CVE-2021-25742 Unauthorized Cluster Secrets Stealth 7.6 Kubernetes Ingress Nginx v1.0.0
CVE-2021-25743 Insecure ANSI Escape Characters Filtering 3.0 Kubernetes < 1.26.0-alpha.3

CWE-200 Internal Service Spoofing - Kubernetes 1.25

Table 2. Comparison of existing LAD datasets.

Dataset Anomaly Scenario Collection Base Label Coarse Application Shift Version Shift System Arch Shift Normality Versatility Log Complexity Anomaly Diversity
AnoShift [20] System Attack NIDS Traffic Logs per entry × ✓ ×

LANL-CMSCSE [37] System Attack System Traffic Logs per entry × ✓ ×
LID-DS [29] Application Attack System Call Logs per window ✓ × ×
CDL [45] Application Attack System Call Logs per window ✓ × ×

LogHub [36, 67] System Anomaly System Information per entry ✓ ✓ ×
CB-DS [23] System Attack System Call Logs per window ✓ × ×

CAShift (Ours) System Attack System Call Logs per window ✓ ✓ ✓

:True, :Partially True, :False

The detailed information of the selected vulnerabilities is shown in Table 1. Notably, CAShift
differs from existing datasets [23, 29] as it considers vulnerabilities in various cloud computing
components, which are often overlooked from a purely application or system attack perspective.
CAShift includes unique cloud-specific attacks such as the newly discovered container escape
vulnerability CVE-2024-21626 [15] and malicious service spoofing on Kubernetes clusters based on
CWE-200 [8]. After preparing the attacks, we replay every attack Proof of Concept (PoC) in the bug
version of the cloud components and collect the exploit system call logs. All attacks in CAShift are
conducted without system admin privileges, closely mirroring real-world application scenarios and
demonstrating the significant impact of these attacks. Overall, CAShift not only includes PoCs and
the collected system logs of the vulnerability but also provides detailed vulnerability analysis (e.g.,
symptoms and root causes), offering insights for refined log analysis and future research purposes.
Comparison of Existing Datasets. Table 2 compares CAShift with existing datasets. Normality
Versatility indicates the variety of software sources covered by datasets. For example, CB-DS only
collects logs from one self-implemented online shopping system, while CAShift includes logs
sourced from different applications and distributed systems. Log Complexity refers to whether logs
contain explicit or structured information that is easy for human interpretation, which indirectly
represents the difficulty of the dataset for LAD methods. For instance, existing datasets contain
many system anomalies that are always coupled with keywords including "warning" or "error",
which is a distinct pattern for fine-grained log annotation and learning, and is easily detected
by LAD methods. Conversely, attack information in CAShift often appears similar to normal
system calls, which makes it more challenging to detect. Anomaly Diversity represents the diversity
of the collected anomaly scenarios of the dataset and considers whether the attacks are from
different attack surfaces of the dataset domain. For example, CB-DS only contains four CVEs and

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:10 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

six misconfiguration scenarios on container service, which limits the practical usage of this dataset.
However, datasets like LogHub and CAShift consider various anomalies in the whole system view
and support diverse scenarios. These three metrics combined with different shift types effectively
demonstrate the diversity and learning challenges of the LAD dataset.

3.3 Quantitative Analysis of CAShift
In this part, we quantitatively analyze how data samples are distributed in CAShift by log embedding
and token frequency visualization.

Fig. 3. T-SNE visualization of shift logs compared to
attack logs and normal logs.

T-SNEAnalysis.We employ the commonly used
unsupervised method t-SNE [56] to help illustrate
the embedding distribution of log information.
Specifically, we randomly sample 100 logs from
each shift scenario and all attack logs first and
then employ the pre-trained BERT-base model
to produce the embeddings of each log sample.
Subsequently, we apply t-SNE to reduce the di-
mensionality of these embeddings to two dimen-
sions for visualization purposes. Figure 3 depicts
the results, where different colors represent dis-
tinct groups of log data distributions, including
base logs (i.e., Wordpress-6-containerd-runc) and
various shift logs.

We observe that different types of shifts devi-
ate to varying degrees from the base distribution,
which is considered as logs without shifts. No-
tably, cloud architecture shifts (e.g., Arch-1) show
the most significant deviations compared to ap-
plication shifts and version shifts. The results of
the t-SNE visualization confirm our intuition that
the analyzed cloud system logs are continuously shifting in different types and emphasize the need
for a comprehensive study of existing LAD methods in detecting such shifted log data.
Log Statistical Characteristics Analysis. Figure 4 depicts the system call frequency of logs in
each distribution. Similar to natural language processing, LAD models treat logs as a sequence of
tokens (e.g., system call names) and then produce the embedding. To this end, we extract all system
call names from the collected log distributions and analyze the frequency of each system call’s
occurrence. Subsequently, we examine the changes in token frequency under different distribution
shifts, and then rank these variations from highest to lowest, identifying the top ten system calls
with the most significant distribution differences. The positive value suggests more system calls
appeared in the shift scenarios, while the negative value indicates more system calls appear in the
base distribution logs. We observe a clear token frequency shift between the shifted log distributions
and the base logs. For the application shift and version shift, the biggest gap can be more than
3%, which is close to the biggest gap between attack logs and normal logs (4.67%), indicating the
significance of the shift. Surprisingly, for the cloud architecture shift, the difference is even greater
and can be up to more than 30%, demonstrating that the cloud architecture changes introduce huge
shift behaviors in the logs and potential influences regarding the performance of LAD models.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:11

(a) Application shift compared to Base (b) Version shift compared to Base

(c) Cloud architecture shift compared to Base (d) Attack logs compared to Normal

Fig. 4. The difference of the frequency (%) of top 10 system call names between shift distributions and the
base distribution.

4 Empirical Study
4.1 Overview
Based on CAShift, we conduct an extensive empirical study to investigate the effectiveness of
LAD methods in detecting cloud attacks and their performance under three shifted scenarios.
Furthermore, we explore whether existing continuous learning approaches can help LAD mitigate
the influence distribution shift.
• Data preparation. First, based on the definition of normality shift, all logs in CAShift can be divided
into multiple groups, e.g., for the application shift, logs collected from the same application are
located in the same group. Then, we treat all the logs in one group as in-distribution data and
logs from other groups as shifted data. Finally, we split the in-distribution and shifted datasets
into training data and test data.

• LAD model training. After the data preparation, we train LAD models using the in-distribution
data and save the best model using validation data randomly split from the training data. Mention
that, in addition to existing LAD methods [4, 22, 23, 47], we further design semantic-aware
embedding methods for system call logs and implement VAE models as one of the baselines.

• LAD model evaluation.We then evaluate the trained LAD model using the in-distribution test
data to explore how effective existing LAD methods are in detecting cloud system attacks to
answer RQ1. Meanwhile, we use shifted test data to investigate the effectiveness of LAD methods
in handling distribution shifts to answer RQ2.

• Shift adaption. Finally, we employ continuous learning-based shift adaptation methods to select
data from the shifted training dataset to label and retrain the trained LAD models in the last step

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:12 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

accordingly. We then evaluate the performance of the retrained LAD models on shifted test data
again to check whether these methods are useful in LAD scenarios and answer RQ3.

4.2 Study Setup
Dataset configuration.We use all our collected logs in the experiment. For the normal data, in
each data distribution, including base logs and six shift scenarios. We randomly allocate 10% of the
logs as test data, which comprises approximately 150 system call traces. Each trace contains about
50 thousand log entries, featuring system logging information including timestamp, CPU ID, thread
ID, system call name, and corresponding parameters. The remaining 90% of the logs are divided
into training and validation data at a 4:1 ratio. For the attack data, across all scenarios, a total of
200 attack system call traces selected from all affected vulnerabilities are used as the test dataset.
LAD models. Our evaluation considers six existing LAD methods including DeepLog, LogAnomaly,
CHIDS, SemPCA, PLELog and LogAD. Since VAE [38] has proved to be an effective embedding
method to distinguish different data distributions, we employ it as one baseline in our study. We
use publicly available implementations [1, 42, 58, 59] for the selected baselines and adhere to their
reported configurations. In cases without official implementation, we implement based on the
provided descriptions in the corresponding papers. We also design semantic-aware embedding
methods for the AE [26] and VAE model and implement as additional baselines.

For AE models, we utilize BERT tokenizer [17] to tokenize system call logs including timestamp,
cpuID, system call, and corresponding arguments first. Then, these tokens are embedded in a
vector-level representation with 768 dimensions. Finally, we utilize class tokens (CLS) of each
embedded sequence to represent each system call log file and calculate the average reconstruction
loss during the test phase. The log data is empirically encoded with a chunk size of 80 log entries
with the token size 512 (which is the size limitation of the Bert base model).

The core design of VAE lies in mapping data to a continuous latent space via its encoder and
reconstructing data from this latent space through its decoder. Different from the AE model, the
training objectives of VAE include minimizing reconstruction error to ensure the reconstructed
data 𝑥 closely matches the original log 𝑥 together with regularizing the latent space, typically by
approximating the latent variables’ distribution to a standard normal distribution. This regulariza-
tion ensures the smoothness of the latent space, facilitating the adaptation of the model to new
samples from different distributions. The loss used in our evaluation is calculated as follows, where
𝑁 represents the total number of input logs:

LVAE =

𝑁∑︁
𝑖=1

[MSE(𝑥𝑖 , 𝑥𝑖 ) + 𝐷𝐾𝐿 (𝑞𝜙 (𝑧𝑖 |𝑥𝑖 )∥N (0, 1))]

In addition to calculating the Mean Squared Error (MSE) between the reconstructed log 𝑥 and
the initial input log 𝑥 , VAE extracts the vector 𝑧 from the latent layer and computes the conditional
probability distribution of the latent variable given the input 𝑥 . The Kullback-Leibler (KL) divergence
from the conditional probability distribution 𝑞𝜙 (𝑧 |𝑥) to the standard normal distribution N(0, 1)
is then used in the loss function LVAE to ensure that the distribution of the latent variables
approximates the predetermined prior distribution.
Continuous Learning Methods. Following previous researches [9, 35], we adopt the popular
continuous learning algorithms [3, 27] to enhance LAD performance (RQ3), including DeepGini,
ZOL, KM-ST, and Random. We select the LAD models with the best performance result in shift
environments (RQ2) for evaluation, namely AE and VAE. We examine different proportions of logs
with three algorithms introduced in these methods and use the selected logs to retrain the model.
The selected continuous learning methods do not require modifications to the original model itself.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:13

Instead, logs are selected based on the reconstruction loss during the decoding process and the
vectors in the latent layer. We load the pre-trained model and apply the same hyperparameters as
the training process to retrain the model.
Evaluation Metrics We measure the performance of LAD methods using three metrics, Receiver
Operating Characteristic - Area Under Curve (ROC-AUC), Precision, Recall, and F1-score. Specifically,
ROC-AUC summarizes the classifier’s performance across all possible classification thresholds and
is independent of the model’s threshold. ROC-AUC approaches 1 indicates a stronger ability of the
model to distinguish between data classes, while the ROC-AUC value closer to 0.5 suggests the
model cannot classify categories in the data. Precision represents the proportion of true anomalies
among all results reported as anomalies. Recall measures the percentage of actual anomalies that
were successfully identified as positive anomalies, and F1-Score considers both the Precision and
Recall of a classification model and serves as their harmonic mean. A higher F1-Score indicates
better performance of the classifier. The calculation of each metric is summarized as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

True Positive (TP) refers to anomaly logs that are correctly labeled as anomalies, while False
Positive (FP) is normal logs incorrectly labeled as anomalies.
Reliability of Experiment Results. To mitigate the effect of randomness introduced by the
model training process and improve the reliability of the results, we apply a 10-fold cross-validation
method to all experiments. We also conduct statistical significance analysis to examine the statistical
significance of differences between LAD behaviors under the in-distribution and six-shift log
data. For each evaluation scenario, we explore various hyperparameters to determine the optimal
performance of LAD under different conditions. Due to space limitations, we report only the best
results for each scenario in the paper.

5 Evaluation Result
5.1 RQ1: Effectiveness of LAD Methods under In-Distribution Scenarios
First, we investigate the effectiveness of LAD methods in cloud systems without considering
distribution shifts. Table 3 presents the results of each method. We can see that all existing LAD
methods (e.g., DeepLog, LogAnomaly) demonstrate effective detection capabilities for cloud attacks
with an average F1-Score over 0.9. This indicates that current methods can handle in-distribution
scenarios. Our implemented VAE achieved the best results, reaching detection rates of approximately
0.99 for each attack. However, some attacks remain challenging for some LAD baselines and can
raise security issues. Specifically, prediction-based methods (including DeepLog and LogAnomaly)
generally yield lower results for Denial of Service attacks within cloud applications, achieving
F1-Scores of 0.8230 and 0.8663, respectively. We conjecture that DoS attacks inherently carry less
semantic information compared to other attacks and the system calls of DoS attacks are often
similar to normal ones [68].
Notably, the AUC and F1-scores for CHIDS are around 0.8 across all attacks. Through our

analysis, these results are attributed to the design of CHIDS, which extracts only the numerical
degree information from the system call graph for AE encoding, unlike our implementation of AE
that directly encodes system calls with semantic information. Therefore, CHIDS tends to have a
higher incidence of false-positive log samples under large-volume log evaluations such as cloud
system logs.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:14 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

Table 3. F1-Scores of LAD methods in detecting different cloud attacks. The best and worst results are
highlighted by the green and red background, respectively.

Attacks
Baselines DeepLog LogAnomaly CHIDS PLELog SemPCA LogAD AE VAE

CWE-400 0.8230 0.8663 0.8032 0.9277 0.8950 0.8395 0.9128 1.0000
CVE-2016-10033 0.9091 0.9347 0.7843 0.9558 0.9499 0.9120 0.8867 0.9950
CVE-2019-17671 0.8261 0.9645 0.8032 0.9595 0.8356 0.9625 0.9849 1.0000
CVE-2017-5487 0.9184 0.8835 0.8065 0.9044 0.9045 0.9347 0.9293 0.9901
CVE-2016-4029 0.9394 0.9381 0.8130 0.9215 0.9111 0.9405 0.9495 1.0000
CVE-2023-23752 0.8857 0.9697 0.8130 0.9825 0.8854 0.9256 0.7831 1.0000
CVE-2021-23132 0.9179 0.9362 0.8032 0.9491 0.9074 0.8913 0.9091 0.9950
CVE-2017-8917 0.9423 0.9238 0.8032 0.9563 0.8826 0.9320 0.7607 1.0000
CVE-2015-8562 0.9246 0.9694 0.8065 0.9510 0.8973 0.9453 0.6832 1.0000
CVE-2019-8341 0.9510 0.9800 0.7905 0.9475 0.8978 0.9485 0.9798 1.0000
CVE-2019-5736 0.9505 0.9648 0.8197 0.9471 0.9482 0.9555 0.9333 0.9655
CVE-2021-30465 0.9223 0.9307 0.7937 0.9153 0.9049 0.9236 0.9751 1.0000
CVE-2024-21626 0.9694 0.8155 0.8130 0.9513 0.9405 0.9633 1.0000 1.0000
CVE-2020-15257 0.9417 0.9557 0.8130 0.9589 0.9018 0.9125 1.0000 1.0000
CVE-2022-1708 0.9849 0.9608 0.8065 0.9902 0.9809 0.9530 0.9950 1.0000
CVE-2020-14386 0.9192 0.9314 0.8368 0.9292 0.9411 0.9056 0.9851 1.0000
CVE-2024-1086 0.9384 0.9474 0.8130 0.9431 0.9312 0.9662 1.0000 1.0000
CVE-2021-25742 0.8900 0.9101 0.8130 0.9400 0.9094 0.9240 0.9082 0.9900
CVE-2021-25743 0.9400 0.9347 0.8000 0.9206 0.9247 0.9404 0.9534 1.0000

CWE-200 0.9179 0.9453 0.8163 0.9606 0.8857 0.9532 0.9851 1.0000

Answer to RQ1: LADmethods can achieve an average F1-Score of 0.9 in cloud attack detection
except for CHIDS, which has a relatively poor ability to detect DoS attacks. The introduced
VAE model achieves nearly perfect detection results across all types of attacks.

5.2 RQ2: Effectiveness of LAD Methods under Normality Shift Scenarios
We then explore whether existing LAD methods can perform well in more practical and challenging
normality shift scenarios. To do so, after training LAD models on the same normality distribution
(Kubernetes system using containerd and runc deployed withWordPress in version 6.2), we evaluate
the detection capability of trained models using our collected shift datasets, CAShift. For simplicity,
we represent shift logs in cloud application Jinja2 as App-1, Joomla as App-2, WordPress version 4.8
as Version-1, WordPress version 5.6 as Version-2, cloud runtime containerd with gVisor as Arch-1
and cloud runtime cri-o with runc as Arch-2. Due to the limited space, we have averaged the results
for all evaluated attacks and presented them in Table 4. Besides, Figure 5 depicts the F1-scores
achieved by each method for better understanding.

From the results, we can see that normality shift highly affects the effectiveness of LAD methods,
leading to varying degrees of performance decrease across different scenarios. We note that most
of the existing LAD methods (e.g., DeepLog and LogAnomaly) experienced significant reductions
(averaging around 20%) in F1-score across all shift scenarios except for scenario Version-2. For harsh
shift scenarios such as Arch-1 and Arch-2, methods in couples with log term frequency statistics,
such as LogAnomaly and SemPCA, demonstrate more robust detection capabilities compared to other
baselines. For the advanced method LogAD, the database-assisted design leads to a greater decrease
in LAD performance with many false positives. Surprisingly, the introduced VAE model achieves
almost perfect detection results under application and version shift scenarios, demonstrating that
the near-perfect detection results in Section 5.1 are not attributable to overfitting. However, VAE is
also significantly influenced by the cloud architecture shift with many false positives, which is a
unique shift type in cloud systems compared to traditional systems. The result indicates that VAE
is unable to differentiate between severely shifted normal logs and attack logs.
To provide a robust statistical foundation for assessing how shift logs and their characteristics

influence LAD models, we conduct an independent samples t-test. This analysis evaluates the

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:15

Table 4. LAD performance under normality shift scenarios. The best and worst results are highlighted by
green and red background, respectively.

Baseline Metrics Base App 1 App 2 Version 1 Version 2 Arch 1 Arch 2
AUC 0.9460 0.7790 0.6504 0.6564 0.8576 0.6074 0.5528

Precision 0.9632 0.7000 0.6074 0.5915 0.8343 0.5663 0.5217
Recall 0.9340 0.9240 0.9040 0.9240 0.9100 0.9160 0.9480DeepLog

F1-Score 0.9483 0.7965 0.7265 0.7212 0.8705 0.6998 0.6730
AUC 0.9450 0.7268 0.6060 0.6360 0.9264 0.6948 0.6366

Precision 0.9762 0.6554 0.5565 0.5781 0.9552 0.6241 0.6038
Recall 0.9320 0.9480 0.9400 0.9680 0.9060 0.9300 0.8900LogAnomaly

F1-Score 0.9535 0.7748 0.6991 0.7238 0.9299 0.7468 0.7194
AUC 0.9650 0.7454 0.6734 0.6497 0.9156 0.7059 0.6294

Precision 0.9727 0.6839 0.5568 0.6734 0.8995 0.6271 0.6134
Recall 0.9710 0.9020 0.9700 0.8050 0.8940 0.8900 0.8800PLELog

F1-Score 0.9718 0.7780 0.7075 0.7333 0.8967 0.7358 0.7229
AUC 0.9533 0.7941 0.6778 0.6742 0.8906 0.6840 0.6106

Precision 0.9668 0.6872 0.5614 0.7184 0.8873 0.6234 0.6278
Recall 0.9490 0.9105 0.9798 0.8564 0.9187 0.9269 0.8989SemPCA

F1-Score 0.9578 0.7832 0.7138 0.7814 0.9027 0.7454 0.7393
AUC 0.9523 0.7357 0.6962 0.6978 0.9224 0.7139 0.6573

Precision 0.9782 0.6573 0.6896 0.6734 0.7497 0.4602 0.4795
Recall 0.9353 0.9467 0.9491 0.9612 0.9504 0.9488 0.9316LogAD

F1-Score 0.9563 0.7759 0.7988 0.7920 0.8382 0.6198 0.6331
AUC 0.7082 0.6360 0.5604 0.6726 0.6690 0.5060 0.4952

Precision 0.6275 0.5708 0.4911 0.6101 0.6178 0.5017 0.4992
Recall 0.9960 0.9960 0.9900 0.9920 0.9880 1.0000 1.0000CHIDS

F1-Score 0.7699 0.7256 0.6565 0.7555 0.7602 0.6682 0.6660
AUC 0.9260 0.9890 0.9921 0.9033 0.8956 0.8802 0.7078

Precision 0.9943 0.9655 0.8780 0.8261 0.6581 0.5576 0.5439
Recall 0.8930 0.8375 0.9175 0.7990 0.9375 0.6831 0.7375AE

F1-Score 0.9409 0.8970 0.8973 0.8123 0.7733 0.6140 0.6261
AUC 0.9979 0.9929 0.9950 0.9942 0.9781 0.7384 0.7011

Precision 0.9976 0.8772 0.8672 0.8911 0.7240 0.5020 0.5228
Recall 0.9820 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995VAE

F1-Score 0.9897 0.9344 0.9287 0.9422 0.8397 0.6683 0.6865

statistical significance of differences between in-distribution and six-shift log data. The p-values for
the F1-scores of LAD models in each shift scenario are 1.1E-03, 1.0E-03, 1.3E-03, 3.9E-03, 4.7E-05,
and 2.1E-05, respectively. These results indicate distribution shift significantly affects each method.

Answer to RQ2: All LAD methods are impacted by normality shift, which leads to decreased
detection performance by up to 34% in F1-Score. Specifically, VAE has the best and most robust
performance against most shift scenarios, while having a significant decrease in performance
during cloud architecture shifts.

5.3 RQ3: Effectiveness of Shift Adaption
Our evaluation in RQ2 reveals that normality shift can introduce performance drops to LAD
methods, therefore, we further investigate whether continuous learning-based shift adaptation

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:16 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Base App 1 App 2 Version 1 Version 2 Arch 1 Arch 2

LAD Performance in Cloud Shift Scenarios

DeepLog LogAnomaly PLELog SemPCA LogAD CHIDS AE VAE

Fig. 5. F1-Scores achieved by each LAD method under normality shift.

can help mitigate such negative impacts. Here, we only consider AE and VAE models as they are
relatively better methods under various distribution shifts. We apply four continuous learning
methods in updating the LAD models under shift scenarios. We follow previous works to explore
hyper-parameters [42] to determine the optimal performance of LAD under different retraining
budgets [30, 33]. Table 5 summarizes the F1-Scores for each baseline after retraining, and Figure 6
depicts the average performance changes of retrained LAD models across different shift scenarios.

0.75

0.77

0.79

0.81

0.83

0 0.1 0.3 0.5 1

F1
Sc
or
e

Labeling Ratio

DeepGini ZOL

KM-ST Random

(a) Average performance change of AE model

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 0.1 0.3 0.5 1

F1
Sc
or
e

Labeling Ratio

DeepGini ZOL

KM-ST Random

(b) Average performance change of VAE model

Fig. 6. The average F1-Score changes during continuous learning.

The results demonstrate that retraining with a portion of new data can indeed enhance the
performance of LADmodels on the shifted test set. In all cases, the LADmodels with the best results
are models after shift adaptation. However, we notice that retraining may reduce the performance
of LAD models, e.g., DeepGini with a ratio of 0.1. Thus, selecting an appropriate number of logs and
choosing the right log selection strategy are both crucial for LAD shift adaptation. More specifically,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:17

Table 5. Results of continuous learning for LAD shift adaptation. The best and worst results are highlighted
by the green and red background, respectively.

Method Baseline Percentage App 1 App 2 Version 1 Version 2 Arch 1 Arch 2
Shift 0 0.8970 0.8973 0.8123 0.7733 0.6140 0.6261

0.1 0.8454 0.8540 0.8784 0.7491 0.6479 0.6502
0.3 0.8140 0.8243 0.8720 0.8038 0.6449 0.6464DeepGini
0.5 0.8119 0.8150 0.8624 0.7937 0.6484 0.6279
0.1 0.8287 0.8271 0.8815 0.7565 0.8579 0.6520
0.3 0.8198 0.8184 0.8582 0.7526 0.8784 0.6475ZOL
0.5 0.8131 0.8113 0.8560 0.7585 0.8857 0.6448
0.1 0.8551 0.8544 0.9015 0.7507 0.8041 0.6644
0.3 0.8303 0.8287 0.8734 0.7661 0.7083 0.6464KM-ST
0.5 0.8150 0.8201 0.8714 0.7644 0.6487 0.6448
0.1 0.8561 0.8513 0.8994 0.8190 0.7867 0.6682
0.3 0.8175 0.8333 0.8755 0.8210 0.7024 0.6466Random
0.5 0.8133 0.8180 0.8559 0.8177 0.6487 0.6448

AE

All 1.0 0.8156 0.8147 0.8585 0.8266 0.6619 0.6524
Shift 0 0.9344 0.9287 0.9422 0.8397 0.6683 0.6865

0.1 0.5726 0.8823 0.9548 0.7510 0.8768 0.7374
0.3 0.9672 0.9511 0.9660 0.9562 0.9260 0.8908DeepGini
0.5 0.9868 0.9707 0.9634 0.9614 0.9100 0.8936
0.1 0.6669 0.6665 0.9554 0.7726 0.6999 0.5878
0.3 0.9736 0.9328 0.9641 0.9634 0.8146 0.8627ZOL
0.5 0.9922 0.9482 0.9619 0.9552 0.9175 0.9373
0.1 0.9021 0.8212 0.9661 0.8819 0.9373 0.9249
0.3 0.9527 0.9744 0.9604 0.9622 0.9381 0.9296KM-ST
0.5 0.9730 0.9845 0.9646 0.9695 0.9378 0.9345
0.1 0.6686 0.8167 0.9301 0.8845 0.9280 0.8764
0.3 0.9581 0.9806 0.9664 0.9689 0.9290 0.9172Random
0.5 0.9839 0.9924 0.9619 0.9743 0.9404 0.9029

VAE

All 1.0 0.9763 0.9773 0.9614 0.9742 0.9342 0.8965

our results indicate that for the AE model, the ZOL selection strategy generally outperforms the
other three methods, with an average improvement of 9.88%. Surprisingly, retraining with more
data (e.g., with all available data) tends to decrease the performance of the AE model. We conjecture
that AE models overfit the shifted distribution and therefore, have low performance after retraining.
For the VAE model, selecting a relatively larger amount of data for retraining leads to better

performance improvements, with a maximum increase of 27% in the F1-Score. As the VAE possesses
a strong capability to learn distribution information, insufficient retraining data can cause confusion
between previously learned patterns and the new distribution, resulting in a significant drop in
performance, as illustrated in Figure 6b. However, utilizing the entire retraining data budget can
lead to diminished performance due to catastrophic forgetting of previously learned distributions.
Therefore, it shows that, unlike the AE, the VAE may require more shift information to better learn
from and successfully reconstruct shifted normal behavior.
Labeling and Computational Cost. Due to the data-centric nature of the LAD task, the perfor-
mance of LAD models after continuous learning can vary significantly across different labeling
budgets. As continuous learning methods require labeled data for retraining, the efficiency of
labeling and retraining warrants discussion. Specifically, the human labeling overhead is difficult

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:18 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

Table 6. Performance of LAD under hybrid shift scenarios.

Base App 1 Version 1 Arch 1 Version + Arch Version + Arch App + ArchLAD Model Metrics WordPress-6-runC Joomla-3-runC WordPress-5-runC WordPress-6-crio WordPress-5-crio WordPress-4-crio Joomla-3-crio
AUC 0.9260 0.9890 0.9033 0.8802 0.8668 0.8680 0.8678

Precision 0.9943 0.9655 0.8261 0.5576 0.4719 0.4789 0.4034
Recall 0.8930 0.8375 0.7990 0.6831 0.7600 0.7600 0.7600AE

F1-Score 0.9409 0.8970 0.8123 0.6140 0.5823 0.5878 0.5270
AUC 0.9979 0.9929 0.9942 0.7384 0.6766 0.6428 0.6435

Precision 0.9976 0.8772 0.8911 0.5020 0.4842 0.4633 0.4236
Recall 0.9820 0.9995 0.9995 0.9995 0.9850 0.9850 0.9850VAE

F1-Score 0.9897 0.9344 0.9422 0.6683 0.6492 0.6302 0.5924

to quantify due to multiple reasons such as the experience of annotators and the complexity of
tasks. Our evaluation reveals that the computational cost of model training is negligible compared
to the human effort required for labeling. During our experiment, processing embeddings for the
dataset of 150 million log entries takes an average of two hours, and training the models (AE and
VAE) on one NVIDIA L40 GPU takes just one minute.

Answer to RQ3: Continuous learning can enhance the performance of LAD models in shift
environments but not always. The selection of continuous learning methods and the labeling
budget highly affects the performance of the produced LAD models. Among our studied
continuous learning methods, ZOL is relatively better than other continuous learning methods.

6 Discussion
6.1 Hybrid Shift Scenarios and Multi-Vector Attack Analysis
In practice, the evolution of cloud business operations can lead to hybrid normality shifts, which
involve more than one shift type. For example, both the deployed application versions and the cloud
system runtimes may change after the system migration, while standalone application changes
or version updates generally do not result in hybrid shift behaviors. Conversely, multiple attacks
are more commonly observed [6], as attackers often employ various techniques simultaneously to
exploit target systems effectively, aiming to maximize the attack efficiency. Therefore, we evaluate
the performance of LAD under hybrid shift scenarios and multi-vector attacks.
Hybrid Shift Scenarios. We select our collected logs containing multiple shift types and evaluate
the performance of AE and VAE models accordingly, with detailed results presented in Table 6. We
find that hybrid shift logs are more difficult to distinguish from attacks for LAD models. Both AE
and VAE exhibit increased reconstruction loss for logs collected from environments with multiple
shifts, leading to more false positives and decreased performance for LAD models.
Multi-Vector Attack Scenarios. We collect logs from the cloud system while launching multiple
simultaneous attacks on different cloud components to evaluate LAD models in detecting multi-
vector attacks. The detailed attack information can be found on our website [2]. Experimental
results reveal that these attacks can all be successfully detected by the LAD models. However, the
anomaly scores of these attacks show that multi-vector attacks present more distinct anomaly
characteristics. Consequently, these characteristics make it easier to differentiate from normal logs.

6.2 Implications
Based on our evaluation results and findings, we identify several key implications that could serve
as promising guidance for future research on log-based attack detection.
• Emphasize the importance of normality shift in LAD.Our experimental results demonstrate
that even the best VAE model, which has almost perfect detection performance on most shift
scenarios, experiences a significant drop in performance under a specific type of shift, i.e., cloud

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:19

architecture shift. Such drops could negatively affect the practical usage of LAD methods in real-
world scenarios. Therefore, although numerous arts are proposed to improve the performance
of LAD under in-distribution environment detection, researchers should pay more attention
to exploring the robustness of these models under normality shift scenarios. The cloud system
maintainers should collaborate closely with tenants to maintain an active LAD updating scheme
and consider applying existing distribution shift detector tools [18, 32].

• Carefully select shift adaptation methods for different LAD approaches. Shift adaptation
is necessary due to the significant performance drops of LAD methods under normality shift
scenarios. Our evaluation highlights the overall positive impact of continuous learning methods
on improving LAD performance in various shift scenarios (e.g., different applications and cloud
systems). However, the selection of continuous learning algorithms and the proportion of
labeled post-shift data used for retraining remain crucial. It involves trade-offs between labeling
efficiency and model effectiveness. As demonstrated by our experimental results in Section 5.3,
choosing sub-optimal adaptation methods cannot only fail to enhance the performance of LAD
but may also worsen its capabilities. Therefore, developers should iteratively increase their
budgets and check the performance of LAD models frequently. Our results show that identical
shifted samples should be prioritized (i.e., ZOL) for selection in LAD shift adaptation.

• Reconsider log distribution in actual application scenarios.When adopting continuous
learning to enhance LAD performance, the learned knowledge from new distributions could
affect the detection ability for already learned data with old distributions. As discussed in prior
works [21, 30], the phenomenon of knowledge learned previously being erased when learning
new samples is termed as catastrophic forgetting. This problem needs to be considered during
updating LAD models. For example, if certain application functionalities no longer exist in new
scenarios, they are regarded as outdated data. In such cases, shift adaptation efforts should
focus solely on the new data distributions. Alternatively, developers may need to adapt to new
distributions while also ensuring that LAD models retain the knowledge of older distributions.

6.3 Future Research Directions
Based on our findings, we identify the following research challenges and provide potential solutions.

• Diverse data preparation. Our study underscores the need to prepare more diverse datasets to
evaluate the capability of LAD applications across various domains, particularly those featuring
different normality shift scenarios. LAD models that achieve promising detection results on a
single distribution do not guarantee robust performance across other distribution characteristics.

• Multi-modal consideration. In cloud attack detection scenarios, there are various types of logs
available besides system call logs, including network traffic information, application-based cloud
monitors such as Falco [25], and application-specific logs such as Java runtime logs. Therefore, in
addition to expanding log datasets from diverse data sources, considering multi-modal methods
to enhance LAD performance in cloud attack scenarios could also be beneficial. This approach
could improve the current LAD models’ ability to learn and detect attack characteristics that are
difficult to discern solely from system call logs.

• Continuous learning methods enhancement.While label-efficient continuous learning methods
have shown potential for mitigating performance degradation in existing LAD models under
shift scenarios, significant room for improvement remains, particularly in cases of substantial
shifts where different models exhibit varied performance changes. Adapting different algorithms
to optimally train models on new distribution log patterns could also be a direction for boosting
LAD shift adaptation. For example, integrating methods like contrasting learning algorithms [57]
in continuous learning methods.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



FSE076:20 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

• Other shift adaptation methods consideration. To enhance LAD model performance in shift
scenarios, other training-less methods [24, 51] can also improve LAD performance, such as
retrieval augmentation generation (RAG). These methods utilize fewer labeled true positive logs
as references to learn post-shift log characteristics without retraining. However, these methods
still struggle with generalization and require specific retrieval sample preparation for each shift
scenario. Therefore, constructing RAG retrieval for LAD is also a promising research direction.

6.4 Threat to Validity
The internal threats to validity are the implementations of models and baselines. During our evalu-
ation, we unify the result-reporting logic of existing baselines to ensure fair baseline comparison.
We prioritize using publicly available implementations for the baselines. For those without open-
sourced implementations, we implement the models based on detailed descriptions in the respective
papers. We maintain consistency in hyperparameters for these baselines to mitigate potential
threats. Specifically, we conduct evaluations on existing datasets (including CB-DS, LogHub) first to
verify correctness, and then proceed with our benchmark.

The external threats come from the collected datasets, used models, and baselines. During the
construction of dataset CAShift, as we cannot collect all attack behaviors from cloud systems, we
collect 20 of the most representative attacks, which consider both the severity and diversity of
our attack scenarios in CAShift to evaluate the performance of LAD methods. We also include the
three most common shift types in cloud systems in our collected dataset. In the future, we plan to
continuously maintain our dataset and add more attacks that consider additional cloud shift types to
better evaluate existing LAD methods. For the evaluation of baselines, we use eight representative
LAD models. We exclude supervised models from our evaluation due to the high cost of labeling
inherent in cloud log characteristics, rendering supervised methods impractical. In future work, we
plan to include more models to demonstrate the generalizability of our conclusions.

7 Conclusion
In this paper, we constructed a shift-aware cloud attack dataset, CAShift for assisting the security
assurance of cloud systems. Using CAShift, we conducted an extensive study to explore the capabil-
ities of LAD methods in detecting cloud attacks under normality shift scenarios. We also examined
the usefulness of current continuous learning methods for LAD shift adaptation. We revealed that
existing LAD methods are significantly impacted by normality shifts, and uncertainty-based con-
tinuous learning strategies are promising for shift adaptation. Based on our findings, we provided
potential research directions for future studies on LAD in shift environments. We believe our work
lays the groundwork for future research in the important area of cloud attack detection.

8 Data Availability
The CAShift dataset together with the source code for experiment evaluation involved in this work
can be found at our website [2].

Acknowledgment
This research is partially supported by the Lee Kong Chian Fellowship, the National Research
Foundation, Singapore, and the Cyber Security Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of National Research
Foundation, Singapore and Cyber Security Agency of Singapore.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.



CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:21

References
[1] Asbatel. 2024. CHIDS. https://github.com/Asbatel/ContainerHIDS.
[2] CAShift-Bench. 2024. Website for CAShift and Source Code. https://sites.google.com/view/cashift-bench.
[3] Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and Peng Cheng. 2023. QuoTe: Quality-

oriented testing for deep learning systems. ACM Transactions on Software Engineering and Methodology 32, 5 (2023),
1–33.

[4] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R Lyu. 2021. Experience report: Deep learning-based
system log analysis for anomaly detection. arXiv (2021). arXiv:2107.05908

[5] Kyunghyun Cho. 2014. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014).

[6] Cloudflare. 2025. Risk grows as multi-vector attacks become the norm. https://www.cloudflare.com/the-net/multi-
vector-threats/.

[7] Containerd. 2024. Containerd. https://github.com/containerd/containerd".
[8] The MITRE Corporation. 2024. CWE-200. https://cwe.mitre.org/data/definitions/200.html.
[9] Xueqi Dang, Yinghua Li, Mike Papadakis, Jacques Klein, Tegawendé F Bissyandé, and Yves Le Traon. 2023. GraphPrior:

Mutation-based test input prioritization for graph neural networks. ACM Transactions on Software Engineering and
Methodology 33, 1 (2023), 1–40.

[10] National Vulnerability Database. 2019. CVE-2019-5736. https://nvd.nist.gov/vuln/detail/CVE-2019-5736.
[11] National Vulnerability Database. 2020. CVE-2020-15257. https://nvd.nist.gov/vuln/detail/CVE-2020-15257.
[12] National Vulnerability Database. 2021. CVE-2021-25742. https://nvd.nist.gov/vuln/detail/CVE-2021-25742.
[13] National Vulnerability Database. 2021. CVE-2021-25743. https://nvd.nist.gov/vuln/detail/CVE-2021-25743.
[14] National Vulnerability Database. 2022. CVE-2022-1708. https://nvd.nist.gov/vuln/detail/CVE-2022-1708.
[15] National Vulnerability Database. 2024. CVE-2024-21626. https://nvd.nist.gov/vuln/detail/CVE-2024-21626.
[16] Datadog. 2024. Container Report. https://www.datadoghq.com/about/latest-news/press-releases/datadogs-2022-

container-report-finds-organizations-expanding-container-adoption-with-improved-ability-to-scale-and-manage-
complex-environments/.

[17] Jacob Devlin. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[18] Terrance DeVries and GrahamWTaylor. 2018. Learning confidence for out-of-distribution detection in neural networks.
arXiv preprint arXiv:1802.04865 (2018).

[19] Docker. 2024. Docker, Inc. https://www.docker.com/.
[20] Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. 2022. AnoShift: A distribution

shift benchmark for unsupervised anomaly detection. Advances in Neural Information Processing Systems 35 (2022),
32854–32867.

[21] Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong anomaly detection through unlearning.
In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security. 1283–1297.

[22] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[23] Asbat El Khairi, Marco Caselli, Christian Knierim, Andreas Peter, and Andrea Continella. 2022. Contextualizing system
calls in containers for anomaly-based intrusion detection. In Proceedings of the 2022 on Cloud Computing Security
Workshop. 9–21.

[24] Asbat El Khairi, Marco Caselli, Andreas Peter, and Andrea Continella. 2024. REPLICAWATCHER: Training-less
Anomaly Detection in Containerized Microservices. In Network and Distributed System Security Symposium, NDSS
2023. Association for Computing Machinery.

[25] Falcosecurity. 2024. Falco. https://falco.org/.
[26] Amir Farzad and T Aaron Gulliver. 2020. Unsupervised log message anomaly detection. ICT Express 6, 3 (2020),

229–237.
[27] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. Deepgini: prioritizing massive

tests to enhance the robustness of deep neural networks. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 177–188.

[28] Josh Gardner, Zoran Popovic, and Ludwig Schmidt. 2024. Benchmarking distribution shift in tabular data with tableshift.
Advances in Neural Information Processing Systems 36 (2024).

[29] Martin Grimmer, Martin Max Röhling, D Kreusel, and Simon Ganz. 2019. A modern and sophisticated host based
intrusion detection data set. IT-Sicherheit als Voraussetzung für eine erfolgreiche Digitalisierung 11 (2019), 135–145.

[30] Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han Zhang, Zhihua Wang, Minghui Jin, Jiahai
Yang, et al. 2023. Anomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation.. In

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.

https://github.com/Asbatel/ContainerHIDS
https://sites.google.com/view/cashift-bench
https://arxiv.org/abs/2107.05908
https://www.cloudflare.com/the-net/multi-vector-threats/
https://www.cloudflare.com/the-net/multi-vector-threats/
https://github.com/containerd/containerd"
https://cwe.mitre.org/data/definitions/200.html
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2020-15257
https://nvd.nist.gov/vuln/detail/CVE-2021-25742
https://nvd.nist.gov/vuln/detail/CVE-2021-25743
https://nvd.nist.gov/vuln/detail/CVE-2022-1708
https://nvd.nist.gov/vuln/detail/CVE-2024-21626
https://www.datadoghq.com/about/latest-news/press-releases/datadogs-2022-container-report-finds-organizations-expanding-container-adoption-with-improved-ability-to-scale-and-manage-complex-environments/
https://www.datadoghq.com/about/latest-news/press-releases/datadogs-2022-container-report-finds-organizations-expanding-container-adoption-with-improved-ability-to-scale-and-manage-complex-environments/
https://www.datadoghq.com/about/latest-news/press-releases/datadogs-2022-container-report-finds-organizations-expanding-container-adoption-with-improved-ability-to-scale-and-manage-complex-environments/
https://www.docker.com/
https://falco.org/


FSE076:22 J. Yu, X. Xie, Q. Hu, B. Zhang, Z. Zhao, Y. Lin, L. Ma, R. Feng and F. Liauw

NDSS.
[31] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural network robustness to common corruptions and

perturbations. arXiv preprint arXiv:1903.12261 (2019).
[32] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. 2018. Deep anomaly detection with outlier exposure. arXiv

preprint arXiv:1812.04606 (2018).
[33] QiangHu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and Yves Le Traon. 2022. An empirical study

on data distribution-aware test selection for deep learning enhancement. ACM Transactions on Software Engineering
and Methodology (TOSEM) 31, 4 (2022), 1–30.

[34] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Lei Ma, Mike Papadakis, and Yves Le Traon. 2024. Active Code
Learning: Benchmarking Sample-Efficient Training of Code Models. IEEE Transactions on Software Engineering (2024).

[35] Qiang Hu, Yuejun Guo, Xiaofei Xie, Maxime Cordy, Mike Papadakis, Lei Ma, and Yves Le Traon. 2023. Codes: towards
code model generalization under distribution shift. In 2023 IEEE/ACM 45th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 1–6.

[36] Zhihan Jiang, Jinyang Liu, Junjie Huang, Li Yichen, Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jieming Zhu, and
Michael R. Lyu. 2024. A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We?. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and Analysis.

[37] Alexander D. Kent. 2015. Cybersecurity Data Sources for Dynamic Network Research. In Dynamic Networks in
Cybersecurity.

[38] Diederik P Kingma. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[39] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu,

Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International conference on machine learning. PMLR, 5637–5664.

[40] Kubernetes. 2024. Kubernetes. https://kubernetes.io/.
[41] Van-Hoang Le and Hongyu Zhang. 2021. Log-based anomaly detection without log parsing. In 2021 36th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 492–504.
[42] Van-Hoang Le and Hongyu Zhang. 2022. Log-based anomaly detection with deep learning: How far are we?. In

Proceedings of the 44th international conference on software engineering. 1356–1367.
[43] Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun, and Xuanzhe Liu. 2022. Enjoy your observability:

an industrial survey of microservice tracing and analysis. Empirical Software Engineering 27 (2022), 1–28.
[44] Yu Li, Muxi Chen, and Qiang Xu. 2022. HybridRepair: towards annotation-efficient repair for deep learning models. In

Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 227–238.
[45] Yuhang Lin, Olufogorehan Tunde-Onadele, and Xiaohui Gu. 2020. CDL: Classified Distributed Learning for Detecting

Security Attacks in Containerized Applications. In Annual Computer Security Applications Conference (ACSAC ’20).
179–188.

[46] Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue, and Shibao
Zheng. 2024. A comprehensive study on robustness of image classification models: Benchmarking and rethinking.
International Journal of Computer Vision (2024), 1–23.

[47] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei
Sun, et al. 2019. Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs. In
IJCAI, Vol. 7. 4739–4745.

[48] Opencontainers. 2023. Open Container Initiative Runtime Specification. https://github.com/opencontainers/runtime-
spec.

[49] Opencontainers. 2024. Runc. https://github.com/opencontainers/runc".
[50] Oracle. 2024. What is Kubernetes. https://www.oracle.com/in/cloud/cloud-native/kubernetes-engine/what-is-

kubernetes/.
[51] Jonathan Pan, Wong Swee Liang, and Yuan Yidi. 2024. RAGLog: Log Anomaly Detection using Retrieval Augmented

Generation. In 2024 IEEE World Forum on Public Safety Technology (WFPST). IEEE, 169–174.
[52] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.
[53] Selenium. 2024. Selenium WebDriver. https://www.selenium.dev/projects/.
[54] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, Masashi Eto, Daisuke Inoue, and Koji Nakao. 2011. Statistical analysis of

honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In Proceedings of the first workshop on building
analysis datasets and gathering experience returns for security. 29–36.

[55] Inc. Sysdig. 2024. Sysdig. https://sysdig.com/.
[56] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research

9, 11 (2008).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.

https://kubernetes.io/
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc"
https://www.oracle.com/in/cloud/cloud-native/kubernetes-engine/what-is-kubernetes/
https://www.oracle.com/in/cloud/cloud-native/kubernetes-engine/what-is-kubernetes/
https://www.selenium.dev/projects/
https://sysdig.com/


CAShift: Benchmarking Log-Based Cloud Attack Detection under Normality Shift FSE076:23

[57] Xuejie Wang, Qilei Cao, Qiaozheng Wang, Zhiying Cao, Xiuguo Zhang, and Peipeng Wang. 2022. Robust log anomaly
detection based on contrastive learning and multi-scale MASS. The Journal of Supercomputing 78, 16 (2022), 17491–
17512.

[58] Lin Yang, Junjie Chen, Shutao Gao, Zhihao Gong, Hongyu Zhang, Yue Kang, and Huaan Li. 2024. Try with Simpler-An
Evaluation of Improved Principal Component Analysis in Log-based Anomaly Detection. ACM Transactions on Software
Engineering and Methodology 33, 5 (2024), 1–27.

[59] Lin Yang, Junjie Chen, ZanWang,WeijingWang, Jiajun Jiang, Xuyuan Dong, andWenbin Zhang. 2021. Semi-supervised
log-based anomaly detection via probabilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1448–1460.

[60] Jiongchi Yu, Xiaofei Xie, Cen Zhang, Sen Chen, Yuekang Li, and Wenbo Shen. 2024. Bugs in Pods: Understanding Bugs
in Container Runtime Systems. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis.

[61] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and Vijay Chandrasekhar. 2018. Adversarially
learned anomaly detection. In 2018 IEEE International conference on data mining (ICDM). IEEE, 727–736.

[62] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng,
Ze Li, et al. 2019. Robust log-based anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
joint meeting on European software engineering conference and symposium on the foundations of software engineering.
807–817.

[63] Nengwen Zhao, Honglin Wang, Zeyan Li, Xiao Peng, Gang Wang, Zhu Pan, Yong Wu, Zhen Feng, Xidao Wen,
Wenchi Zhang, et al. 2021. An empirical investigation of practical log anomaly detection for online service systems.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1404–1415.

[64] Ziming Zhao, Zhaoxuan Li, Zhuoxue Song, Wenhao Li, and Fan Zhang. 2024. Trident: A universal framework
for fine-grained and class-incremental unknown traffic detection. In Proceedings of the ACM Web Conference 2024.
1608–1619.

[65] Ziming Zhao, Zhaoxuan Li, Xiaofei Xie, Jiongchi Yu, Fan Zhang, Rui Zhang, Binbin Chen, Xiangyang Luo, Ming Hu,
and Wenrui Ma. 2024. : Towards Fine-Grained Unknown Class Detection Against the Open-Set Attack Spectrum With
Variable Legitimate Traffic. IEEE/ACM Transactions on Networking (2024).

[66] Ziming Zhao, Zhaoxuan Li, Jiongchi Yu, Fan Zhang, Xiaofei Xie, Haitao Xu, and Binbin Chen. 2023. CMD: Co-analyzed
IoT malware detection and forensics via network and hardware domains. IEEE Transactions on Mobile Computing 23, 5
(2023), 5589–5603.

[67] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. 2023. Loghub: A large collection of system log
datasets for ai-driven log analytics. In 2023 IEEE 34th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 355–366.

[68] Vinko Zlomislić, Krešimir Fertalj, and Vlado Sruk. 2017. Denial of service attacks, defences and research challenges.
Cluster Computing 20 (2017), 661–671.

Received 2024-08-26; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE076. Publication date: July 2025.


	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Attacks in Cloud Systems
	2.2 Log-Based Anomaly Detection Methods
	2.3 Distribution Shift in LAD
	2.4 Continuous Learning for Shift Adaptation

	3 CAShift: Benchmarking for Cloud Attack Detection
	3.1 Normality Shift
	3.2 Dataset Collection
	3.3 Quantitative Analysis of CAShift

	4 Empirical Study
	4.1 Overview
	4.2 Study Setup

	5 Evaluation Result
	5.1 RQ1: Effectiveness of LAD Methods under In-Distribution Scenarios
	5.2 RQ2: Effectiveness of LAD Methods under Normality Shift Scenarios
	5.3 RQ3: Effectiveness of Shift Adaption

	6 Discussion
	6.1 Hybrid Shift Scenarios and Multi-Vector Attack Analysis
	6.2 Implications
	6.3 Future Research Directions
	6.4 Threat to Validity

	7 Conclusion
	8 Data Availability
	References

