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Abstract—Fuzz testing for Internet of Things (IoT) devices

has become a critical area of research, as these devices play an

increasingly vital role in modern networks and infrastructure.

While significant e↵orts have been made, the Common Gateway

Interface (CGI) programs that serve as an important compo-

nent within these devices remain underexplored. Despite their

extensive use in IoT web services, the specific characteristics of

CGI programs have posed technical challenges to existing fuzzing

infrastructures. To address these gaps, we propose CGIFuzz,

the first gray-box fuzzing framework tailored for CGI programs

in Linux-based IoT devices. CGIFuzz initially enables dynamic

instrumentation of CGI programs through Relay-Pass Instrumen-
tation, then leverages Large Language Models (LLM) for assisting

high-quality fuzz test input generation. Furthermore, CGIFuzz

devises oracles for detecting command injection and memory

corruption vulnerabilities by leveraging multiple critical features

during program execution. Our evaluation of CGIFuzz on ten

popular IoT devices demonstrates superior coverage exploration

and vulnerability detection capabilities compared to the state-of-

the-art fuzzers. Notably, CGIFuzz discovered 69 vulnerabilities,

including 13 previously unknown ones for which 9 CVEs were

assigned.

Index Terms—Gray-box fuzzing, Internet of Things, common

gateway interface, command injection vulnerabilities, large lan-

guage models.

I. INTRODUCTION

A
S INTERNET of Things (IoT) devices become ubiq-
uitous, their web-based management interfaces have

emerged as a primary attack surface [1], [2]. These web
systems, typically accessible via ports 80 or 443, consist of
two main components: a web server and multiple Common
Gateway Interface (CGI) programs [3], [4], as shown in
Fig. 1. While the web servers often employ well-tested open-
source software (e.g., Apache httpd, GoAhead, and Nginx)
[5], [6], [7], the CGI programs present a starkly di↵erent
security posture. Typically developed in-house by manufac-
turers, distributed as closed-source binaries, and granted high
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Fig. 1. Workflow of CGI-based IoT web system.

privileges for system operations, these custom CGI programs
are frequently insecure and serve as a critical entry point
for compromising devices [8], [9]. Therefore, proactively
discovering vulnerabilities in these CGI binaries is crucial for
securing the IoT ecosystem.

To this end, fuzz testing is a widely adopted and e↵ec-
tive technique for identifying software vulnerabilities, with
several tools [10], [11], [12], [13], [14], [15], [16] having
been developed for IoT devices. These approaches can be
broadly categorized as black-box or gray-box, yet both fall
short when applied to CGI programs. Some tools employ
black-box techniques, which require no knowledge of the
program’s internals [10], [11], [16]. While simple, their lack
of runtime feedback severely limits their ability to explore
complex program states. This is particularly detrimental for
fuzzing CGI programs, whose behavior often depends on
intricate combinations of input parameters. Furthermore, as
black-box scanners can only infer bugs from outputs, they
are prone to high false-positive rates and struggle to detect
critical threats like command injection vulnerabilities, one
of the most prevalent types in IoT devices [14]. Gray-box
fuzzers, in contrast, leverage runtime feedback such as path
coverage to guide input generation, demonstrating significant
advantages over black-box methods [12], [13], [14], [15],
[17]. However, these solutions are still not directly applicable
to CGI programs. The reason lies in the unique, two-stage
validation process within IoT web systems. Specifically, an
incoming request must first pass the web server’s syntactic
validation (e.g., protocol structure). Only then is it dispatched
to the target CGI program, which performs its own semantic
verification (e.g., parameter logic and value constraints) before
executing its core functions. Consequently, the internal logic
of a CGI program is triggered only when an input satisfies both
criteria. We term this interaction model a shadow calling pair,
as the CGI program is invoked transiently and is opaque to
the end-user. This unique execution model poses fundamental
challenges that existing fuzzing frameworks fail to address
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A. Enabling the Universality of CGI Path Coverage
Collection

Some gray-box tools [12], [14], [15] use emulation-based
instrumentation to collect coverage data. However, emula-
tion often struggles with the intricate hardware and software
dependencies of IoT devices, leaving many real-world devices
unsupported [13]. To address this, debugger-based approaches
[13], [17] extend applicability by enabling instrumentation
on both simulated and physical hardware devices. Despite
these advancements, debugger-based methods are ill-suited for
handling transient and dynamically invoked CGI programs.
Their requirement to launch the target program under a debug-
ger is fundamentally incompatible with the CGI execution
model, where programs are dynamically spawned by a web
server process, not the fuzzer. Therefore, a novel approach is
necessary to collect path coverage for CGI binaries universally
and e↵ciently on live devices.

B. Generating E↵ective Test Input for CGI
The second major challenge stems from the fact that CGI

programs do not operate in isolation. Unlike typical fuzzing
where the fuzzer interacts directly with the target binary, a
fuzzer for CGI programs must communicate through an inter-
mediary: the web server. This creates a stringent, two-stage
validation gauntlet that any test input must pass. First, the input
must be syntactically valid to be accepted and parsed by the
web server (e.g., conforming to HTTP specifications). Second,
it must be semantically correct to satisfy the internal logic of
the CGI program itself (e.g., containing the right parameter
names, value formats, and dependencies). Generating e�ective
test inputs that can consistently satisfy both layers of validation
is a significant hurdle for automated fuzzing tools.

C. Detecting CGI Vulnerabilities Accurately
The final challenge lies in vulnerability detection. The ora-

cles in most existing fuzzers are designed primarily to detect
memory corruption vulnerabilities by watching for process-
ending signals like segmentation faults. However, command
injection, a critical and prevalent vulnerability class in CGI
programs, often does not cause a crash. Instead, a successful
injection may result in the silent execution of malicious
commands, making it completely invisible to conventional
crash-based oracles. This highlights the urgent need for a
more sophisticated oracle capable of reliably identifying the
subtle execution pattern anomalies associated with command
injection attacks in IoT environments.

In this paper, we present CGIFuzz, the first gray-box fuzzing
framework designed to e�ectively detect vulnerabilities for
CGI programs of IoT devices. Specifically, CGIFuzz intro-
duces new solutions across feedback collection, test case
generation, and vulnerability detection. The framework con-
sists of three core components: the Relay-Pass Dynamic
CGI Instrumentation, which leverages a Debugger-Based CGI
Wrapper to dynamically collect runtime basic block coverage
data of CGI programs; the LLM-Assisted Test Input Generator,
which ensures syntactically and semantically valid fuzzing
inputs through a Semantic Packet Collector and an RFC-
Conformant Test Input Filtration; the Command Injection
Enhanced Vulnerability Detector, enabling the detection of
memory corruption and command injection vulnerabilities in

IoT devices. We implement a prototype of CGIFuzz and
evaluated it on ten popular IoT devices. Our experiments
demonstrated that CGIFuzz achieves 184.91% higher basic
block coverage compared to the state-of-the-art gray-box
fuzzer GDBFuzz and 119.25% higher compared to the state-
of-the-art black-box tool BooFuzz. It successfully detected 69
vulnerabilities, including 13 previously unknown vulnerabili-
ties, 9 of which were assigned CVEs.

In summary, this paper makes three contributions.
• We conduct an empirical vulnerability study that reveals

the prevalence and critical severity of CGI program vul-
nerabilities in IoT devices, which highlights an aspect that
has been overlooked in existing research. A comprehen-
sive review of related research, along with the identified
shortcomings in testing CGI programs is discussed.

• We design CGIFuzz, a novel framework that enables
gray-box fuzzing for CGI programs of IoT devices. The
framework introduces three key techniques: (1) a univer-
sal dynamic instrumentation method for CGI binaries on
live IoT devices, (2) the leveraging of Large Language
Models (LLMs) to generate syntactically and semanti-
cally valid test inputs, and (3) a specialized oracle for
the accurate detection of both memory corruption and
command injection vulnerabilities.

• We implement a prototype of CGIFuzz and evaluate it on
ten popular IoT devices. Our experiments demonstrate the
superior performance of CGIFuzz as it achieves 184.91%
higher basic block coverage compared to the state-of-
the-art gray-box fuzzer GDBFuzz and 119.25% higher
compared to the state-of-the-art black-box tool BooFuzz.
CGIFuzz detects a total of 69 vulnerabilities, among
them 13 are previously unknown vulnerabilities, with 9
assigned CVEs.

II. BACKGROUND AND RELATED WORKS

A. Fuzz Testing for IoT Devices
Fuzz testing [18] has proven to be an e�ective method for

detecting software vulnerabilities by sending randomized test
inputs to the target software. Compared to black-box fuzzing,
gray-box methods leverage execution feedback to enhance
vulnerability detection e�ectiveness [19], [20], [21], [22], [23],
[24], [25], [26]. While fuzzing has been applied in the IoT
domain, existing methodologies are ill-suited for the unique
challenges posed by Web CGI programs.

General-purpose fuzzers, such as AFL [27] and libFuzzer
[28], are powerful for standalone binaries but inherently lack
the mechanisms to handle the structured network communi-
cation required by the HTTP protocol. Similarly, advanced
fuzzers designed for other specific IoT protocols, like LLMIF
[29] for Zigbee, are methodologically incompatible. Their
design is deeply coupled with the data formats and state
machines of their target protocols (e.g., Zigbee frames),
making them unsuitable for the distinct request-response
architecture of HTTP-based web services. This fundamental
mismatch prevents them from e�ectively interacting with a
web service to test backend CGI applications.

Even fuzzers designed specifically for web protocols strug-
gle when confronted with the unique execution model of CGI
programs, which imposes a stringent “two-stage validation”
process. An input must first pass the web server’s syntactic
protocol check and then satisfy the CGI program’s internal
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semantic logic. Black-box web fuzzers [10], [11], [30], [31],
which typically use predefined packet templates, face a sig-
nificant e↵ciency bottleneck against this dual barrier. Their
mutation strategies generate a high volume of test cases that
fail the initial syntactic validation, and the few that pass
are unlikely to meet the semantic requirements of the CGI
program. Consequently, this approach fails to achieve deep
path exploration, resulting in very low testing e↵ciency.

Gray-box web fuzzers also face significant challenges.
Applying them to IoT devices is complicated by proprietary
source code, limited computational resources, and restricted
permissions. Existing approaches often rely on emulators like
QEMU [32] to gather coverage data [12], [15], [33], [34], [35].
However, the intricate dependencies between hardware and
software in IoT devices make full-system emulation challeng-
ing, often resulting in environments that lack crucial real-world
functionalities and thus limiting universality. Alternatively,
debugger-based approaches like GDBFuzz [13], while more
versatile, are incompatible with the “shadow calling” model
of CGI execution. These fuzzers require direct control over
the target process’s lifecycle, which is impossible for transient
CGI programs that are dynamically spawned by a web server.
This inability to attach to and monitor the target CGI process
prevents the collection of the very code coverage feedback
essential for a gray-box fuzzer to operate e�ectively. These
limitations highlight the need for a specialized framework
designed to overcome the specific challenges of CGI fuzzing.

B. Debugger-Based Instrumentation
Debuggers such as GDB are commonly used to monitor pro-

gram execution and step through code at specific breakpoints.
For targets with limited computational resources, debugging
often involves setting up a debugger server, such as gdbserver,
on the remote device and configuring a debugger client, such
as GDB, to control program execution more flexibly [36].
This setup allows developers to test programs and apply
universal debugging scripts with greater ease. Additionally,
debuggers support cross-platform instruction sets, including
MIPS, ARM RO, and PowerPC, making them particularly well-
suited for testing IoT devices.

Existing research [13], [17] has explored leveraging soft-
ware debugging interfaces for fuzzing embedded systems.
These techniques use breakpoint information from debuggers
to collect code coverage data, enabling more e↵cient testing
of embedded firmware. However, this approach encoun-
ters a fundamental conflict when applied to CGI programs.
Debugger-based fuzzers require control over the target’s life-
cycle, typically by launching the program directly under the
debugger’s supervision. This is incompatible with the CGI
execution model, where the program is dynamically spawned
and managed by a web server in response to a request, which is
the very “shadow-calling” feature we identified. Additionally,
IoT devices typically lack accessible debugging options, mak-
ing it di↵cult to extract internal data from hardware devices.
As a result, debugging-based testing methods are generally
limited to devices where debugging capabilities are enabled
by default.

C. LLM-Assisted Fuzz Testing
Recent studies have explored the potential of Large Lan-

guage Models (LLMs) to enhance fuzz testing methodologies.

TABLE I
STUDY OF CGI VULNERABILITY PREVALENCE AND SEVERITY

ACROSS MAJOR IOT MANUFACTURERS

Leveraging their exceptional performance in coding tasks,
LLMs have been utilized to generate fuzz drivers by producing
driver code based on provided code information and specific
requirements. For instance, research such as TitanFuzz [37]
and PromptFuzz [38] has demonstrated the use of LLMs to
generate fuzz drivers.

LLMs have also been applied to the generation of test
inputs or input generators. Specifically, GPTCombFuzz [39]
employs LLMs to create suitable fuzz seeds to enhance the
performance of AFL. CovRL-Fuzz [40] uses LLMs as test
input generators while incorporating reinforcement learning
to optimize mutation strategies. However, these approaches,
while demonstrating the promise of LLMs, primarily focus on
generating inputs for general-purpose libraries or standalone
programs. We aim to address the significant, open problem
of generating inputs for network-facing applications like CGI
programs, which must satisfy both strict protocol syntax and
complex, stateful application semantics.

D. Vulnerability Study of CGI in IoT Devices
1) CGI-Based IoT Web Server: As shown in Fig. 1, a

typical IoT web system consists of a web server and multiple
CGI binary programs. The web server is responsible for
parsing incoming HTTP requests and, based on the request,
dispatching them to the appropriate CGI program for process-
ing [3], [4]. This interaction follows a two-stage validation:
the web server first ensures the request is syntactically correct
according to protocol formats [41], after which the CGI
program validates the semantic content, such as required
parameters and input formats, before executing its core logic
[42]. Executing with high privileges, these CGI programs then
interact directly with the underlying operating system, making
them a critical component whose security posture defines the
overall security of the device.

2) Severity of CGI Vulnerabilities: To quantify the security
risk posed by CGI programs in IoT devices, we conducted an
empirical study of their vulnerabilities. We selected eight pop-
ular IoT manufacturers: D-Link, ASUS, Linksys, TOTOLink,
Trendnet, Belkin, QNAP, and Synology. We collected a total of
3,486 CVEs reported for these manufacturers up to September
28, 2023, from the MITRE CVE database [43], [44], [45]. We
then jointly performed an in-depth manual analysis of these
reports to identify all vulnerabilities rooted in CGI programs.
We also calculated the average Common Vulnerability Scoring
System (CVSS) score for the identified CGI vulnerabilities
and compared it against the overall average. The results are
presented in Table I.

Finding: CGI programs represent a significant and severe
threat vector in IoT devices. Our study reveals that 18.24% of
all analyzed vulnerabilities are related to CGI programs. Fur-
thermore, these CGI-related vulnerabilities are substantially
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Fig. 2. Overview of CGIFuzz.

more severe, with an average CVSS score of 7.99, indicating
a high-risk profile [46].

Our findings indicate that CGI programs are responsible
for nearly one-fifth of the security vulnerabilities in the
IoT devices studied, underscoring their critical role in IoT
security. The significantly higher average CVSS score is
largely attributed to the high-privilege context in which these
programs operate. This risk is compounded by several factors.
Unlike open-source web servers that benefit from a large com-
munity for maintenance and extensive testing, CGI programs
are typically developed in-house by device manufacturers.
These programs are often closed-source, receive less rigorous
security testing, and are execute with elevated privileges,
increasing the risk of severe vulnerabilities like command
injection stemming from inadequate input validation [47].

3) Vulnerability Types in CGI Programs: While many
vulnerability types exist, memory corruption and command
injection are among the most common and dangerous in IoT
CGI programs. Memory corruption, such as a bu�er overflow,
occurs when a program writes data beyond an intended bu�er,
which can lead to a system crash. In contrast, command
injection vulnerabilities [48] arise when untrusted user input is
passed to sensitive system functions like system() or popen(),
allowing an attacker to execute arbitrary commands, control
the system, or exfiltrate data.

Detecting command injection is a known challenge. For
instance, Witcher [14] attempts detection by replacing system
binaries to transform errors into crashes, a method unsuitable
for the read-only filesystems common in IoT devices. Black-
box tools like BooFuzz [10] analyze device responses, but this
is less e�ective for command injection, which may not produce
an overt abnormal response. Other tools like SRFuzzer [49]
inject specific payloads (e.g., using ping or wget) and monitors
for their e�ects. However, triggering these vulnerabilities is
often non-trivial due to constraints like input length limits and
character filtering, making it di↵cult to uncover exploitable
vulnerabilities with these methods.

III. DESIGN OF CGIFUZZ

In this section, we introduce the design details of CGI-
Fuzz. The high-level architecture of CGIFuzz is illustrated

in Fig. 2. CGIFuzz overcomes the challenges of applying
coverage-guided fuzzing to CGI programs by introducing three
key components. To ensure universal instrumentation of CGI
programs, CGIFuzz implements the Relay-Pass Dynamic CGI
Instrumentation (blue components in Fig. 2). To generate valid
inputs for CGI programs, CGIFuzz implements the LLM-
Assisted Test Input Generator (green components in Fig. 2).
Finally, to facilitate the detection of command injection,
CGIFuzz implements the Command Injection Enhanced Vul-
nerability Detector (brown components in Fig. 2). CGIFuzz is
a gray-box web vulnerability scanner that uses a coverage-
guided mutation fuzzer to drive the automated exploration
of CGI programs in Linux-based IoT devices. Particularly,
CGIFuzz collects basic block coverage data without relying
on software simulation, making it widely applicable to both
simulations and hardware devices. This overall design of
interacting directly with the live web server, rather than sim-
ulating the CGI environment, ensures that CGIFuzz can test
all parameter-passing mechanisms with high fidelity, whether
they are standard or proprietary.

A. Relay-Pass Dynamic CGI Instrumentation
The Relay-Pass Dynamic CGI Instrumentation provides

coverage information by implementing dynamic instrumenta-
tion for CGI programs in three stages: enabling debugging
functionality through the Debugger Configurator; deploying a
CGI Wrapper to intercept program invocations; and using the
Relay-Pass Coverage Collector to gather basic block data.

1) Debugger Configurator: As most IoT devices do not
have GDB debugging functionality enabled by default, the
Debugger Configurator employs a two-step process to enable
debugging on IoT devices. The first step involves acquiring
command execution capabilities on the device. To ensure
broad applicability across various IoT devices, we employ a
systematic, tiered strategy that proceeds with escalating inva-
siveness. We first attempt Software-Based Exploitation, the
least invasive method, by leveraging known, publicly disclosed
vulnerabilities. If software exploits are unavailable or ine�ec-
tive, we proceed to Hardware-Based Access. This involves
identifying and utilizing standard debugging interfaces,
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such as UART or TTL ports, on the device’s printed circuit
board (PCB) to establish a shell session, a method that is
common practice in IoT security research. As a final resort, we
employ direct Firmware Modification, a process that involves
physically extracting the firmware from its flash memory chip,
modifying it to enable a root shell, and then re-flashing it
onto the device. While this final method is the most invasive,
its broad applicability is grounded in the typical security
posture of our target devices. The vast majority of consumer
and SOHO IoT devices are subject to significant cost and
time-to-market pressures, which often results in a lack of
sophisticated hardware security measures such as secure boot
or robust firmware encryption [50], [51]. Large-scale studies
have confirmed that unencrypted firmware is commonplace
in the IoT landscape, ensuring that direct flash modification
remains a highly viable last resort for gaining access even
when other software and hardware interfaces are locked down
[52]. Once command execution privileges are obtained, the
subsequent step is to determine the device’s instruction set
architectures and upload the precompiled gdbserver binaries
for the corresponding architecture to the device using built-in
tools such as wget, ftp, or tftp. This process enables debugging
functionality on the device.

2) CGI Wrapper: Most existing instrumentation methods
for IoT devices are limited in their applicability due to
their reliance on software simulation of the device. A novel
instrumentation approach for embedded systems based on
GDB is introduced in GDBFuzz [13]. GDBFuzz requires
that CGI programs be launched under gdbserver attached
to facilitate instrumentation. However, CGI programs on IoT
devices are typically launched dynamically by web servers,
involving complex threading and data transmission mecha-
nisms. Moreover, significant implementation di�erences exist
among various web servers (e.g., Nginx, Apache, Lighttpd).
This diversity complicates the task of accurately capturing the
launch timing of CGI programs and modifying their invocation
methods. To address this, CGIFuzz constructs CGI Wrapper
based on the web configuration file and LLM, which acts as
an intermediary layer between the web server and the CGI
program. The CGI Wrapper captures the critical moments
when the CGI program is invoked and alters the launch
method to the gdbserver-attached mode, enabling dynamic
instrumentation. Specifically, based on gaining underlying
command execution access to IoT devices, we have developed
an automated method to deploy the CGI Wrapper. CGIFuzz
locates the web process by identifying the web port (80 or 443)
and then determines the web configuration file’s name and
location based on the process. It parses the web configuration
file to specify settings related to the web server’s invocation of
CGI programs. Next, the tool modifies the configuration and
deploys the CGI Wrapper to ensure that each CGI invocation is
routed through the Wrapper. The CGI Wrapper, in turn, starts
the respective CGI program in gdbserver mounting mode.
Furthermore, due to significant di�erences in configuration
file syntax among di�erent web servers (e.g., Nginx, Apache,
Lighttpd), LLM is used to automatically identify and mod-
ify key positions in the configuration file, thus supporting
the wide range of complex web architectures. For instance,
we provide the LLM with the server type (e.g., Nginx)
and the goal (e.g., ‘redirect all requests for login.cgi to a
wrapper script’), and it generates the precise configuration
syntax.

Fig. 3. The workflow of relay-pass coverage collector.

Fig. 4. The instrumentation of CGIFuzz and existing fuzzers.

3) Relay-Pass Coverage Collector: Upon receiving a
request, the CGI program is launched in debug mode based
on the CGI wrapper. The instrumentation breakpoints are
deployed by the CGI Wrapper to get the basic block coverage
of the request. After execution, the CGI program exits with
the breakpoints automatically cleared. To support this dynamic
behavior, in contrast to the workflow of traditional web
fuzzing tools’ pre-instrumentation, mutation, request sending,
and coverage collection, the Relay-Pass Coverage Collector’s
workflow consists of mutation, request sending, dynamic
instrumentation, and coverage collection, adapting to the CGI
architecture, as is shown in Fig. 3. Our coverage collection fol-
lows a two-phase process. First, in a one-time o✏ine analysis,
we use the reverse engineering tool Ghidra [53] to disassemble
the CGI programs, get the control flow graph (CFG), and
extract all basic block addresses. Dominator relations are then
used to optimize these addresses. Second, during the runtime
fuzzing process, CGIFuzz dynamically deploys breakpoints
at these pre-identified addresses for each request. The set
of unique breakpoints triggered during an execution consti-
tutes the code coverage data for that specific input. Unlike
traditional fuzzing tools that require pre-instrumentation and
program compilation, CGIFuzz o�ers an innovative solution
for e↵ciently instrumenting CGI programs. As displayed in
Fig. 4, while existing debugger-based approaches can instru-
ment long-running processes like web servers, they cannot
attach to the transient, server-spawned CGI programs.

B. LLM-Assisted Test Input Generator
In the Shadow Calling architecture, the input needs to

be syntactically valid to pass the web server protocol syn-
tax validation. Meanwhile, the input needs to contain the
correct combinations and values of required parameters to
pass the pre-validation of CGI programs. Invalid packets are
discarded and do not contribute to the increase of coverage.
Thus, ensuring high-quality test inputs is important for CGI
fuzzing. The LLM-Assisted Test Input Generator consists
of two components to generate e�ective fuzz test input for
CGI programs: the Semantic Packet Collector uses an
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Fig. 5. Example prompt for LLM-Assisted fuzzing input generation.

Fig. 6. Example of the header of an IoT web packet.

Fig. 7. Example of extracted packet variables.

LLM-powered web crawler to collect all legitimate functional
packets supported by the target system to be used as mutation
seeds. The data mutation strategy from libfuzzer [28] is applied
to perform data mutation. Since mutation operations may
violate the original packet’s syntax, the RFC-Comformant Test
Input Filtration, based on retrieval-driven LLMs and RFC
documents, is designed to filter the mutated packets, ensuring
that each input sent to the target system is valid.

1) Semantic Packet Collector: The Semantic Packet Col-
lector is an automated crawler with the LLM and playwright
[54], designed to comprehensively gather di�erent types of
web packets accepted by the web system, which subsequently

serve as seeds for fuzzing. The HTTP header shown in Fig. 6
and the HTTP parameters shown in Fig. 7 depict a CGI
packet captured when manually accessing a real device. When
specific values are manually input into the corresponding web
page input fields, followed by clicking the submit button,
the browser will automatically construct this packet and send
it to the device’s web system. Our idea is to automate the
process of simulating human access to the web system and
use web crawlers to collect all types of packets. The key to
achieving this is the proper construction of HTTP parameters.
We find that all submitted data can be classified into explicit
and implicit parameters based on whether they are user-
entered. In the example data packet, the parameters such as
sip, eip, server, priDns, secDns, mtu, mru are explicit because
they are manually entered by users according to the page
information. The explicit parameters usually impose stringent
requirements on the input format and content. For example,
the prompt information on the example web page clearly states
that eip, server and priDns should be of the IP address data
type, and the value of mtu and mru must be between 1,400
and 1,500. In addition, there may be other complex data
requirements. Users need to enter valid values that satisfy the
requirement according to the page prompt information, or it
will fail the dynamic validation of the front-end JavaScript
code, preventing the generation of the data packet. To address
these issues, the LLM’s ability is used to understand frontend
code to address the generation of explicit parameters. During
crawling, the system parses the web page code, extracts the
relevant segments associated with the input, and sends them
individually to the LLM (GPT-4 model) to understand the
web prompt information and generate a valid explicit param-
eter. Meanwhile, the example packet’s parameters topiurl and
token are implicit because they are dynamically generated
through JavaScript code on the webpage instead of directly
controlled by the user. To solve this, our collector employs a
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synergistic workflow between the LLM and the Playwright
browser automation framework. For explicit parameters, the
LLM first analyzes the relevant HTML/JS snippets to gen-
erate valid input values. Next, Playwright, acting as the
controller, programmatically fills the web form with these
LLM-generated values and then simulates the necessary user
action, such as clicking the ‘Submit’ button. This crucial step
triggers the browser’s native engine to execute all client-side
JavaScript, which computes any implicit parameters (e.g., ses-
sion tokens) and constructs the final, legitimate HTTP request.
Finally, Playwright’s network interception feature captures this
fully-formed data packet. This hybrid approach allows us to
leverage the LLM’s semantic understanding while relying on a
high-fidelity browser environment to handle complex, dynamic
client-side logic, ensuring the reliable collection of high-
quality seed packets. Overall, the Semantic Packet Collector
simulates and automates user behavior when accessing pages
in a browser, ensuring the correctness of both explicit and
implicit parameters. Thus, it guarantees the integrity and
e↵cient collection of web packets.

2) RFC-Conformant Test Input Filtration: The web mod-
ules of IoT devices adhere to the standardized HTTP/1.1
protocol [41]. Meanwhile, di�erent devices may utilize data
formats such as XML [55] or SOAP [56] for their parameters.
During the fuzzing, non-compliant test inputs are typically
rejected outright by the web server, thus considerable time is
wasted parsing such invalid inputs. The RFC-Conformant Test
Input Filtration leverages the LLM at its core to address this
ine↵ciency. Initially, the regulator deduces specific protocol
and data field formats from the collected legitimate packets.
To achieve this, the regulator employs a Retrieval-Augmented
Generation (RAG) methodology that leverages both protocol
standards and real-world examples. First, we construct a
knowledge base from standard protocol specifications (e.g.,
RFC 2616 for HTTP/1.1, RFC 7303 for XML). When analyz-
ing a set of similar legitimate packets, the regulator retrieves
the most relevant technical specifications from this knowledge
base. These retrieved documents, along with the collection
of packet examples, are then provided to the LLM as a
rich, combined context. This augmented prompt guides the
LLM to understand both the o↵cial protocol rules and the
specific implementation’s structure, enabling it to generate a
highly accurate regular expression for validation. The detailed
prompt for this process is illustrated in Fig. 5. The regula-
tor employs these rules to pre-screen candidate test inputs,
ensuring that only those meeting compliance criteria are
forwarded to IoT devices for fuzzing. Furthermore, according
to the RFC standard, for data packets of POST and PUT
type requests, the value of the Content-Length header must
accurately reflect the size of the submitted data. Therefore,
an additional calibration step for data packets is executed to
ensure the relevant input strictly adheres to the RFC standard.
By reducing the computational overhead of processing invalid
inputs, this regulator significantly enhances the e↵ciency of
the fuzz testing process.

C. Command Injection Enhanced Vulnerability Detector
Memory corruption vulnerabilities and command injection

vulnerabilities are two of the most common and critical
security issues in IoT devices [57]. In IoT device fuzz test-
ing, memory corruption vulnerabilities are typically detected

Algorithm 1 Command Injection Enhanced Vulnerability
Detection

Require: Test input corpus C, Target device D, Sensitive
function list F, Threshold K
Ensure: Reported vulnerabilities V

1: Initialize vulnerabilities V = [ ]
2: for each input in C do

3: trace execute(input, D)
4: if trace.hasCrash() then

5: Vul type: Memory Corruption, input: input, info:
trace.crashInfo

6: V .append(Vul)
7: continue Proceed to the next input
8: end if

9: triggered calls trace.getSensitiveFunctionCalls(F)
10: for each call in triggered calls do

11: Stage 1: Command Execution Pattern Match

12: arguments call.getArguments()
13: score calculateLCS(arguments, input)
14: if score > K then

15: Stage 2: Execution Legality Verification

16: returnValue  call.getReturnValue() Abnormal
return value indicates a potential issue

17: if returnValue , 0 then

18: Vul  type: Command Injection, function:
call.name, input: input, ret: returnValue

19: V .append(Vul)
20: end if

21: end if

22: end for

23: end for

24:return V

by leveraging segmentation fault signals. However, detecting
command injection vulnerabilities remains challenging due to
the absence of distinctive signatures. Some existing methods
[16], [49] attempt to detect command injection vulnerabilities
by injecting specially crafted payloads during input mutation
and monitoring their execution outcomes. However, these
methods often operate with coarse granularity, and the trig-
gering conditions for command injection vulnerabilities can be
intricate (e.g., constraints on input length, character filtering, or
encoding), resulting in potential false negatives and incomplete
detection. Recent research [14] proposed a novel method for
detecting command injection, but it necessitates replacing the
system’s native command execution program (e.g., dash). This
approach is impractical for IoT devices due to their read-only
file systems and limited computational resources.

To address these limitations, we propose the Command
Injection Enhanced Vulnerability Detector, a two-stage ora-
cle detailed in Algorithm 1. Notably, our detection logic
is not based on static text or regular expression matching.
Instead, it identifies a dynamic, two-condition behavioral
pattern at runtime. The two stages of our oracle directly
implement this pattern: First, the Command Execution Pattern
Match mechanism fulfills the first condition by identifying a
critical data flow between test inputs and arguments of func-
tions susceptible to command injection. Next, the Execution
Legality Verification mechanism fulfills the second condition
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by confirming a potential injection through the analysis of
the function’s execution result. A potential vulnerability is
reported only when both conditions are met simultaneously,
which facilitates a generalized and e↵cient detection of com-
mand injection vulnerabilities during the fuzz testing process
for IoT devices.

1) Command Execution Pattern Match: The underlying
principle is that if any part of a user-controllable input
packet is passed as the arguments cp of the command-
injection-sensitive functions fi  F such as system, execve,
and popen, a potential vulnerability exists. Based on this
concept, whenever the program executes a command-injection-
sensitive function, we extract its arguments and compute their
correlation with the input packet. According to the results
obtained from the correlation, we identify potential command
injection vulnerability test cases. To this end, we first identify
all the command-injection-sensitive functions in CGI programs
denoted as F = { f1, f2, . . . , fn}. The CGI instrumentation
approach described in Section III-A is used to instrument
each triggered function fi and capture all arguments Cp =
{cp

1 , c
p
2 , . . . , c

p
n } from memory during testing. CGIFuzz then

calculates the correlation
Pn

i=1 R(cp
i , x

p),2cp
i  Cp between the

arguments Cp and the test input xp to determine whether the
arguments are related with the input packet. We apply Longest
Common Subsequence (LCS) [58] as the relativity function
R in CGIFuzz. To achieve a higher identification accuracy
during the testing, we set the empirical hyperparameter K1

as the threshold for filtering command injection vulnerability
candidates xc.

xc
i =

(
xp

i

ˇ̌
ˇ̌
ˇ

nX
i=1

LCS(cp
i , x

p
i ) > K

)
8 ?,2cp

i  Cp

2) Execution Legality Verification: After identifying poten-
tial vulnerabilities, we conduct an in-depth analysis of
command execution outcomes to minimize false positives.
In legitimate, non-vulnerable cases, even if arguments origi-
nate from user input, they have passed strict validation and
filtering. Thus, the executed commands are valid, and the
sensitive functions typically exit normally with a return value
of zero. Conversely, when a command injection vulnerability
is present, fuzzed inputs often lead to malformed command
strings. The execution of such malformed commands causes
the sensitive function to terminate with a non-zero error code.
Therefore, we use the function’s return value to verify each
candidate.

As the return value of a function is stored in a specific
CPU register immediately after its execution, we use the
CGI instrumentation approach in Section III-A to place a
breakpoint on the instruction following the call to the sensitive
function. This allows us to capture the return value from
the designated register. Consequently, CGIFuzz examines the
execution output status fi(c

p
i ) for each cp

i  Cp. The return
values of command executions from our candidates are parsed,
and those candidates with significantly deviated return values
from the successful exit value (0) will be reported as command
injection vulnerabilities.

1We set the parameter K as 6 in evaluations based on the empirical analysis
of the vulnerability dataset presented in Table I.

IV. EVALUATION

In this section, we aim to answer the following questions
through the evaluation of CGIFuzz:
• RQ1: How e�ective is CGIFuzz and what are the contri-

butions of the three core components?
• RQ2: How e�ective is CGIFuzz when compared with

state-of-the-art?
• RQ3: Can CGIFuzz discover real-world vulnerabilities?
• RQ4: How e�ective and practical is the integration of

LLMs in the CGIFuzz framework?

A. Evaluation Setup
1) Fuzz Target Selection: To evaluate CGIFuzz, we selected

ten diverse IoT devices, as detailed in Table II. These devices
include models from Cisco, D-Link, TOTOLink, Trendnet,
Vivotek, and ipTime. Our selection process was guided by
four principles to ensure both the suitability of the targets and
the generalizability of our results.
• Suitability: All chosen devices are Linux-based, provide

web services, and utilize CGI programs in their web
architecture, aligning with CGIFuzz’s design objectives.

• Representativeness: We focused on devices from well-
known manufacturers with a significant market share [59],
[60], which are frequently cited in related IoT security
research [12], [16], [29], [49], [61], [62].

• Methodology Diversity: Our testing setup incorporated
both physical hardware (six devices) and full-system
emulation via FirmAE [63] (four devices) to demonstrate
broad applicability.

• Category Coverage: We aimed for comprehensive cov-
erage across common device types, including wireless
routers, wireless access points (APs), Network-Attached
Storage (NAS) devices, and network cameras.

It is noteworthy that several devices in our test set, par-
ticularly the D-Link DNS-320 and ipTIME C200, feature a
modular architecture with numerous individual CGI programs.
To focus our evaluation on the most significant components,
we adopted a systematic target selection methodology for these
cases. We prioritized CGI binaries based on their functional
criticality (e.g., those handling authentication, system configu-
ration, or file uploads) and their code complexity, for which we
used the binary’s file size as a practical proxy. This principled
approach ensures that our fuzzing e�orts are directed at the
components most likely to contain impactful vulnerabilities.

2) Environment Setup: Experiments were conducted on an
Ubuntu 22.04 machine (Intel i7-7700, 8GB RAM). Physical
devices were connected via a wired network. A prerequisite for
our testing on physical hardware was gaining initial command
execution access. To achieve this, we systematically applied
the tiered access strategy detailed in Section III-A. This
approach proved successful across all ten devices in our evalu-
ation. For transparency, Table III outlines the specific method
used to gain a root shell for each device, empirically validating
the practicality of our prerequisite access methodology. With
root access established on each target, we then deployed the
necessary gdbserver and CGI Wrapper, configured CGIFuzz,
and initiated the tests.

3) Vulnerability Confirmation: We manually verified
all generated alerts, confirming exploitability and cross-
referencing against public CVEs. CGIFuzz identified 69 dis-
tinct vulnerabilities: 56 previously known and 13 zero-day.
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TABLE II
SUMMARY OF DEVICE TESTING INFORMATION

TABLE III
METHOD USED TO GAIN ROOT SHELL ACCESS FOR EACH DEVICE

We responsibly disclosed the new findings, resulting in 9

assigned CVEs with 4 pending.

B. Evaluation of CGIFuzz Components (RQ1)
To evaluate the contribution of each core component to

CGIFuzz’s e�ectiveness, we conducted an ablation study using
various configurations of our tool. The three core components
refer to the Relay-Pass Dynamic CGI Instrumentation (RDCI),
the LLM-Assisted Test Input Generator (LTIG), and the Com-
mand Injection Enhanced Vulnerability Detector (CIEVD). We
design the following configuration options:
• CGIFuzz: The full framework including RDCI, LTIG,

and CIEVD.
• CGIFuzz-LC: The configuration without RDCI (i.e.,

“Less Coverage”)..
• CGIFuzz-RC: The configuration without LTIG (i.e.,

“Random Corpus”).
• CGIFuzz-RL: The configuration without CIEVD (i.e.,

“Reduced Logic” for detection).
To comprehensively address RQ1, we evaluated these

configuration options based on two key metrics: real-world
vulnerability detection and basic block coverage. The exper-
imental procedures are as follows: First, We deploy the four
configuration options across ten di�erent IoT devices and
conduct fuzzing over a ten-day period. During this time, we
recorded the number of vulnerabilities detected under each
configuration option to compare their real-world vulnerability
detection capabilities. The results are summarized in Table V,
where the columns C, LC, RC, and RL represent CGIFuzz,
CGIFuzz-LC, CGIFuzz-RC, and CGIFuzz-RL, Second, since
vulnerability discovery can be influenced by random factors,
we conducted additional experiments on some devices to mea-
sure the code coverage achieved by each component. These
results, which more directly reflect a component’s ability to
explore new program states, are presented in Table IV. As the
CIEVD component is a detection oracle and does not influence
path exploration, this coverage experiment included only three
configurations: CGIFuzz, CGIFuzz-RC, and CGIFuzz-LC. In

coverage experiments, we ran each configuration three times
and reported the best result.

1) Evaluation of RDCI: The RDCI component is designed
to collect basic block coverage for CGI programs running
on the target device. To assess the impact and e�ectiveness
of this component, we compare the performance of the full
CGIFuzz framework against CGIFuzz-LC, a variant that lacks
the RDCI component and thus operates without coverage
feedback. As shown in the Table V, the inclusion of RDCI
leads to substantially better vulnerability detection. The full
CGIFuzz framework successfully identified 69 vulnerabilities,
while CGIFuzz-LC detected only 36, representing a 91.67%
improvement. This trend is mirrored in code coverage, as
shown in Table IV. CGIFuzz covered a total of 4795 basic
blocks, whereas CGIFuzz-LC reached only 3798, demonstrat-
ing that RDCI improved basic block coverage by 26.25%.
A deeper analysis of the results reveals the mechanism
behind this improvement. We found that several zero-day
vulnerabilities discovered by CGIFuzz, namely CVE-2024-
32349, CVE-2024-32350, and CVE-2024-32351, could all be
triggered by mutations of the same initial seed. Equipped
with RDCI, CGIFuzz could recognize that this seed was
exploring valuable new paths and therefore prioritized it,
ultimately leading to the comprehensive discovery of these
related vulnerabilities and higher overall coverage. In contrast,
CGIFuzz-LC, lacking coverage feedback, treated the seed
randomly and failed to explore its potential su↵ciently. As a
result, it only identified one of the vulnerabilities and achieved
significantly lower coverage. These results clearly demonstrate
the critical role of the RDCI component in enabling e�ective
and deep fuzzing of CGI programs.

2) Evaluation of LTIG: The LTIG component is designed
to generate fuzzing test input for web CGI programs. To isolate
and measure its e�ectiveness, we established the CGIFuzz-RC
configuration as a baseline. For this configuration, we initiated
the fuzzing process with a single, legitimate packet captured
from normal device interaction as the sole initial seed. The
mutation was then handled by the mutator from libFuzzer.
By comparing CGIFuzz (with LTIG) against CGIFuzz-RC, we
can directly assess LTIG’s contribution. The core hypothesis
is that without LTIG’s semantic guidance and RFC-compliant
filtering, a generic mutator will quickly corrupt the packet’s
structure, leading to a high volume of invalid inputs rejected
by the web server or CGI program, thus limiting deep path
exploration. As shown in the Table V, CGIFuzz successfully
detected 69 vulnerabilities, whereas CGIFuzz-RC identified
only 6, demonstrating a substantial improvement in vulner-
ability detection capability. Regarding basic block coverage
data, CGIFuzz achieved a cumulative coverage of 4795 basic
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TABLE IV
CGI COVERAGE COMPARISON UNDER DIFFERENT CONFIGURATION OPTIONS

TABLE V
FOUND VULNERABILITY AMOUNT IN DIFFERENT CONFIGURATIONS. ‘C’

REFERS TO ‘COMPLETE’, ‘B’ REFERS TO ‘BASE’

blocks, compared to only 1486 by CGIFuzz-RC, representing a
significant 222.68% improvement due to the LTIG component.

Further analysis of the experimental data revealed that
CGIFuzz successfully detected the CVE-2024-50917 vulnera-
bility, which CGIFuzz-RC failed to detect. CVE-2024-50917
is a 0-day vulnerability discovered in the D-Link DIR-850L
device, caused by a bu�er overflow in the cgibin program
when processing UPnP requests. The vulnerability’s root
issue lies in the absence of validating the length of the
HTTP SOAPACTION parameter. Triggering this vulnerability
requires the test packets to conform to HTTP syntax, the
data field to satisfy SOAP formatting, and the values of
parameters such as Service and SOAPAction to be semantically
valid. However, during mutation, CGIFuzz-RC often generates
overly random packets that disrupt the required syntax and
fail to produce semantically valid parameter values. As a
result, most test packets are discarded by the web server or
CGI pre-check logic, preventing detection of this vulnerability.
These experimental results demonstrate the critical role and
e�ectiveness of the LTIG component.

3) Evaluation of CIEVD: The CIEVD is designed as an
enhanced oracle for fuzzing. Unlike traditional vulnerability
detectors in fuzzers, which typically identify only memory
corruption vulnerabilities by monitoring for system error sig-
nals (e.g., segmentation faults) and timeouts, CIEVD extends
this capability by incorporating a specialized analysis module
for detecting command injection vulnerabilities. To evaluate
the e�ectiveness of this enhancement, we compared the full
CGIFuzz framework against CGIFuzz-RL, a configuration
that includes all components except for CIEVD’s command
injection analysis. As shown in Table V, it shows that the
full CGIFuzz discovered a total of 69 unique vulnerabilities,
comprising 52 command injection and 17 memory corruption
vulnerabilities. In contrast, CGIFuzz-RL was only able to iden-
tify the 17 memory corruption vulnerabilities, demonstrating

the critical contribution and e�ectiveness of our enhanced
detection design.

To further evaluate the precision of CIEVD, we analyzed
all alerts generated during testing. Across all runs, CIEVD
produced 113 unique alerts for potential vulnerabilities. Man-
ual verification confirmed that 69 of these were true positives,
corresponding to an overall false positive rate of 38.9%. We
investigated the root causes of these false positives, which
primarily originated from the command injection detection
logic. A portion of them stemmed from transient environ-
mental issues, such as network jitter, which we believe can
be mitigated through improved engineering solutions. The
more significant category of false positives arises from the
misinterpretation of benign “injections” with legitimate non-
zero return codes. For example, many devices feature a “ping
test” utility where user-provided IP addresses are passed to a
command like system(“ping -c 4 user ip”). If a fuzzer pro-
vides an unreachable IP address, the system function correctly
returns a non-zero value to indicate failure. Our detector flags
this scenario because it correctly identifies both the data flow
from user input to a sensitive function and the subsequent
abnormal return. While our detector correctly identifies the
data flow and abnormal return, this specific scenario is not an
exploitable vulnerability. Such cases, where legitimate user-
input errors mimic command injection failures, were found to
be relatively infrequent. We contend that the current false pos-
itive rate is acceptable for a practical vulnerability discovery
tool, though future work could still explore deeper semantic
analysis to further enhance precision. These results show the
important role of the CIEVD component in enabling CGIFuzz
to detect command injection vulnerabilities. A detailed com-
parison of CIEVD with other related approaches is presented
in Section IV-C.3.

All three core components of CGIFuzz contribute signif-
icantly to its overall performance, each playing a distinct
role. The RDCI is fundamental for achieving e�ective path
coverage for CGI programs, thereby facilitating the compre-
hensive exploration of potential execution paths and promising
seeds. The LTIG is crucial for synthesizing semantically and
syntactically valid test inputs, which is paramount for CGI
programs given their stringent data format and semantic con-
tent requirements. The CIEVD, unlike traditional fuzzing tools
primarily focused on memory corruption, provides specialized
detection capabilities for command injection vulnerabilities,
a particularly pervasive and critical class of flaws in IoT
devices. Our ablation study reveals varying impacts from these
components. Quantitatively, the LTIG generally contributes
more significantly to path coverage improvements than the
RDCI. This can be attributed to the fact that without LTIG,
the fuzzer (e.g., CGIFuzz-RC) may generate a high volume of
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Fig. 8. A command injection case of D-Link DNS320.

invalid inputs, which are swiftly discarded by the web server or
CGI pre-checks, thus impeding e↵cient coverage exploration.
Conversely, the CIEVD component operates as a functional
enhancement rather than a performance optimization. Con-
sequently, it does not directly influence path coverage. Its
contribution to the total number of detected vulnerabilities is
directly correlated with the prevalence of command injection
vulnerabilities within the target devices.

C. Comparison With Baselines (RQ2)
To evaluate the advancement and e�ectiveness of CGIFuzz,

we performed a comparative analysis against state-of-the-art
fuzzers. Our selection of baselines was guided by a core
principle: to ensure a fair and relevant comparison, the chosen
tools must align with CGIFuzz’s primary objective of testing
web CGI programs on IoT devices, particularly on physical
hardware without depending on full-system emulation. Con-
sequently, we selected the following baselines:
• GDBFuzz [13]: As the state-of-the-art gray-box fuzzer

that uses a debugger-based approach compatible with
physical devices, GDBFuzz is the most suitable counter-
part to CGIFuzz. As discussed in Section II, most other
gray-box fuzzers are emulation-based and cannot run on
our target hardware.

• BooFuzz [10]: As our black-box baseline, we selected
BooFuzz, a mature and widely-adopted network protocol
fuzzing framework. It can be readily deployed against
diverse hardware, and its template-based nature allows
for crafting inputs appropriate for CGI testing.

• SRFuzzer [49]: To provide a direct and focused compar-
ison for our command injection detection capabilities, we
implemented the core principles of SRFuzzer. As a well-
known fuzzer specialized in finding command injections
in IoT routers, it serves as an ideal specialized baseline
for evaluating our CIEVD component.

The evaluation was conducted based on two key metrics:
code coverage and the number of vulnerabilities detected. The
results are detailed in Table V and Table IV, and the coverage
trend is illustrated in Figure 9.

1) Comparison With Gray-Box Fuzzers: As established,
we chose GDBFuzz as our gray-box baseline because its
debugger-based approach supports physical devices, aligning
with our objectives. However, since GDBFuzz does not sup-
port the “shadow calling” characteristic of CGI programs, it
cannot directly instrument them. To accommodate this, we
adjusted its instrumentation target to the web server in our
experiments. Furthermore, GDBFuzz lacks a component for
generating semantically-aware inputs, like our LLM-Assisted
Test Input Generator (LTIG). As demonstrated in our RQ1
analysis (Section IV-B.2), the absence of semantically valid
inputs significantly reduces fuzzing e�ectiveness. Therefore, a
direct comparison with the original GDBFuzz would be unfair.

To create a stronger baseline, we enhanced GDBFuzz with our
Semantic Packet Collector (SPC) functionality, creating a new
configuration named GDBFuzz-SPC.

The experimental results in Table V show that CGIFuzz
significantly outperforms this enhanced baseline. In terms of
vulnerability detection, CGIFuzz identified 69 vulnerabilities,
nearly eight times more than the 9 vulnerabilities found
by GDBFuzz-SPC. Regarding code coverage, the results in
Table IV show that CGIFuzz achieves 184.91% higher CGI
code coverage compared to GDBFuzz-SPC, and a 400%
improvement over the original GDBFuzz.

Further analysis attributes the poor performance of the
GDBFuzz-based approaches to their lack of adaptability to
CGI programs. Testing CGI programs requires inputs that are
not only syntactically valid but also semantically coherent
to e�ectively trigger and explore deep code paths. The test
data generated by the original GDBFuzz often fails these con-
straints. Although GDBFuzz-SPC starts with valid seeds, its
generic, unconstrained mutation process quickly corrupts the
packet structure. Crucially, neither GDBFuzz nor GDBFuzz-
SPC can collect feedback from the internal paths of the
CGI programs themselves, making their exploration relatively
blind. Moreover, both are unable to detect the command
injection vulnerabilities prevalent in our target devices.

Notably, a comparison between GDBFuzz-SPC and
CGIFuzz-LC o�ers a key insight. The primary di�erence is
that the former instruments the web server while the latter uses
no instrumentation at all (but benefits from LTIG). As shown
in Table IV, CGIFuzz-LC still outperforms GDBFuzz-SPC in
achieving CGI code coverage. This finding strongly suggests
that feedback-guided fuzzing based on the coverage of the web
server is largely ine�ective for enhancing the exploration of
back-end CGI programs.

2) Comparison With Black-Box Fuzzers: We selected Boo-
Fuzz as the black-box baseline due to its wide adoption and
its flexibility for deployment on both emulated and physical
devices. BooFuzz’s fuzzing e↵ciency heavily relies on the
quality of manually crafted templates. To ensure a fair com-
parison, we invested e�ort in creating high-quality templates
that reflect a solid understanding of the target CGI program’s
expected inputs.

The experimental results in Table V show a stark di�erence
in performance. CGIFuzz identified 69 vulnerabilities, more
than 13 times the 5 vulnerabilities detected by BooFuzz.
Regarding code coverage, as detailed in Table IV, CGIFuzz
achieved 119.25% higher CGI code coverage compared to
BooFuzz.

Further analysis reveals that BooFuzz’s limitation stems
from its black-box nature: it lacks any understanding of the
target’s internal state and logic, preventing it from generat-
ing semantically valid test packets for complex cases. For
instance, successfully triggering the CVE-2024-32351 vul-
nerability requires the test input to contain specific values
for fields like topicurl and enable. As a black-box tool,
BooFuzz has no way to infer these semantic requirements.
Consequently, its randomly generated inputs consistently fail
the program’s validation checks, making it incapable of detect-
ing such vulnerabilities and leading to its overall weaker
performance.

3) Comparison Regarding Command Injection Vulnerability
Identification Capabilities: To specifically evaluate our Com-
mand Injection Enhanced Vulnerability Detector (CIEVD), we
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Fig. 9. Coverage of CGIFuzz compared to baselines.

selected SRFuzzer [49] as a specialized baseline. SRFuzzer
is a well-regarded fuzzing tool for IoT devices, known for
its strong performance in command injection vulnerability
detection. Its core methodology involves injecting out-of-band
interaction payloads (e.g., using wget) and monitoring for
network callbacks to confirm a successful injection.

Since SRFuzzer’s source code is not publicly available, we
re-implemented its vulnerability detection module based on its
published principles. Our implementation constructs a payload
string such as ;wget http://192.168.0.10:8000/index.html; and
randomly inserts it into various input fields during muta-
tion. A listening server on our local machine (192.168.0.10)
monitors for incoming network tra↵c to identify successful
injections.

To ensure a fair, “apples-to-apples” comparison between the
two detection oracles, it is crucial to eliminate di�erences in
input generation capabilities. We therefore created a hybrid
baseline, CGIFuzz-SR, which combines CGIFuzz’s advanced
input generation and coverage guidance engine with our imple-
mentation of SRFuzzer’s detection logic. This allows us to
compare the e�ectiveness of our CIEVD against SRFuzzer’s
principles under an identical, high-quality stream of test cases.

The experimental results reveal a significant performance
gap between the two detection oracles. CGIFuzz’s CIEVD
detected a total of 52 command injection vulnerabilities. In
contrast, the SRFuzzer-based oracle in CGIFuzz-SR detected
only 30 vulnerabilities, all of which were also found by
CGIFuzz. This indicates that CGIFuzz’s detection mechanism
is approximately 1.73 times more e�ective.

Further analysis highlights an inherent limitation in
SRFuzzer’s out-of-band detection methodology: its di↵culty
in identifying command injection vulnerabilities that are
subject to length restrictions. For example, a zero-day vulner-
ability we discovered in the D-Link DNS320 device, shown
in Fig. 8, illustrates this weakness. The vulnerable code uses
the function cgiFormString(“overwrite”, v3, 8), which extracts
the value of the overwrite parameter into the variable v3
but truncates it to a maximum of 8 characters. Subsequently,

v3 is concatenated into a command string and executed by
the system() function, creating a classic command injection
scenario.

When testing this, the SRFuzzer-based approach injects
its payload, ;wget http://. . .;. However, due to the length
restriction, this payload is truncated to just the first 8 char-
acters, ;wget ht. This truncated string is syntactically invalid
as a command and thus fails to trigger the expected network
request, causing the SRFuzzer oracle to miss the vulnerability
entirely. This case highlights a fundamental limitation of
detection methods that rely on the successful execution of
a lengthy, externally-visible payload. In contrast, CGIFuzz’s
CIEVD, by analyzing internal memory data and CPU register
values (i.e., the arguments to and return value from system()),
is independent of the payload’s successful execution. This
capability underscores its superiority in handling complex,
real-world command injection scenarios.

D. Reveal of Real-World Vulnerabilities (RQ3)
During the evaluation, CGIFuzz identifies a total of 69

vulnerabilities across ten di�erent IoT devices, as detailed in
Table VI. These include 52 command injection vulnerabil-
ities and 17 memory corruption vulnerabilities, showcasing
CGIFuzz’s ability to uncover diverse vulnerability types.
After cross-referencing our findings with publicly available
CVE information, we confirmed that 56 of these were
previously known vulnerabilities. More importantly, we dis-
covered 13 previously unknown (zero-day) vulnerabilities.
Following a responsible disclosure process with the device
manufacturers and CVE organizations, we have successfully
been assigned 9 new CVE identifiers, with 4 more currently
under review. The distribution of confirmed vulnerabilities
by CVSS base score reveals 10 low-severity vulnerabilities
(CVSS < 4.0), 9 medium-severity vulnerabilities (CVSS
4.0�6.9), and 33 high-severity vulnerabilities (CVSS � 7.0).
The average CVSS base score for all confirmed vulnerabilities
is 7.97, indicating a high proportion of critical findings.
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TABLE VI
THE VULNERABILITIES DISCOVERED BY CGIFUZZ CATEGORIZED BY TYPE AND CVSS SCORE, WITH UNIQUE VULNERABILITIES HIGHLIGHTED

The results demonstrate the e�ectiveness and significance of
CGIFuzz in detecting both known and unknown, high-impact
vulnerabilities in real-world CGI-based IoT devices.

1) Case Study: To illustrate CGIFuzz’s capabilities, we
examine CVE-2024-32351 [66], a zero-day vulnerability we
discovered. It is a critical-level (CVSS 8.8) command injection
vulnerability (CWE-77 [67]) in the TOTOLINK X5000R
router, which could allow a remote attacker to execute arbi-
trary commands with root privileges, potentially leading to a
complete device takeover.

As shown in Fig. 10, the vulnerability’s root cause is the
direct and unsanitized concatenation of the user-controlled
mru parameter into a command string that is later executed
by the system() function. Discovering this vulnerability pre-
sented a dual challenge that CGIFuzz is uniquely designed to
overcome. First, reaching the vulnerable code path requires
satisfying specific contextual preconditions (e.g., setting the
topicurl parameter to setL2tpServerCfg and enable to 1).
Second, because this type of command injection does not
cause a service crash, its detection requires a specialized, non-
crash-based oracle.

In our evaluation, only CGIFuzz successfully identified this
vulnerability. Its LLM-Assisted Test Input Generator was able
to produce the semantically valid inputs required to satisfy the
preconditions and reach the vulnerable code. Concurrently, its
Command Injection Enhanced Vulnerability Detector correctly
identified the data flow from the user-controlled input to the
sensitive function and flagged the resulting abnormal return
value, thereby confirming the vulnerability.

In contrast, the baseline tools failed due to their inherent
limitations. GDBFuzz-SPC, with its structure-unaware muta-
tion strategy, could not consistently generate inputs satisfying
the strict syntactic and semantic requirements. The black-box
fuzzer, BooFuzz, lacking insight into the program’s internal

Fig. 10. Detail of CVE-2024-32351.

state, was unable to fulfill the specific contextual conditions
needed to navigate to the vulnerable logic. Moreover, even if
these tools were to accidentally trigger the vulnerability, their
crash-oriented oracles would likely have missed it.

E. Discussion on the Practicality of LLM Integration (RQ4)
In our design of CGIFuzz, the LLM serves as a key
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discussion on its e�ectiveness, operational costs, and relia-
bility. Instead of being used as a general-purpose reasoning
engine, the LLM is applied to three specific, independent, and
well-defined tasks.

1) LLM Task Specification: Our framework leverages the
LLM for the following tasks:
• Automating Web Server Configuration Modification: The

LLM automates the modification of diverse web server
configuration files to intercept CGI program calls. For
instance, when provided with a device’s lighttpd.conf
file, the LLM can be prompted to redirect all CGI requests
to our wrapper script, returning the correctly modified
configuration file. This automates a process that would
otherwise require security experts to manually study
specific documentation for various servers (e.g., Apache,
Nginx).

• Generating Semantically Valid Inputs: The LLM ana-
lyzes webpage source code to infer the expected format
of user inputs for generating high-quality initial seeds.
For example, by analyzing the HTML snippet for a
“MAC Address” input field, including its < label> and
maxlength=’’17’’ attribute, the LLM correctly infers
the expected format (e.g., 00:1A:2B:3C:4D:5E). This
ensures the seeds can pass the CGI program’s initial
semantic validation.

• Generating Protocol Validation Filters: The LLM creates
protocol-specific validation filters to ensure that mutated
test cases remain syntactically correct. Given a sample
HTTP request, the LLM identifies the protocol, Refer-
ences the relevant RFCs (e.g., RFC 2616, RFC 8259),
and generates a precise regular expression to validate all
subsequent mutated packets.

2) E↵ectiveness and Empirical Validation: The e�ective-
ness of this integration is validated both qualitatively and
quantitatively. Qualitatively, as mentioned, it automates com-
plex, expert-level tasks. Quantitatively, the contribution of
the LLM-powered components forming our LLM-Assisted
Test Input Generator (LTIG) is empirically validated by our
ablation study. As shown in Table IV and Table V, the full
CGIFuzz framework achieved 222.68% higher path coverage
compared to CGIFuzz-RC, which lacks the LLM components.
Furthermore, it discovered 69 unique vulnerabilities, a signifi-
cant increase over the 6 found by CGIFuzz-RC. This strongly
validates our LLM integration.

3) Operational Cost: A critical aspect of our design is
the management of operational costs, encompassing both API
token consumption and time latency. All LLM-driven tasks
are intentionally confined to the one-o� or low-frequency
pre-processing stage, completely avoiding the high-frequency
fuzzing loop. To quantify this, we estimated the token
consumption based on our experiments. For initial seed gen-
eration, analyzing a webpage with approximately 20 input
fields required about 4000-8000 tokens; for a device with
50 distinct pages, this one-time cost is manageable. The
modification of a typical server configuration file (e.g.,
lighttpd.conf) consumed around 2000-6000 tokens in a
single call. Finally, generating a protocol filter via our RAG
approach required less than 100,000 tokens per protocol. These
minimal, low-frequency costs are well-justified by the sub-
stantial improvements in automation and subsequent fuzzing
e↵ciency.

4) Reliability and Inaccuracy Mitigation: We proactively
address the reliability of LLM outputs with a two-fold strategy.
First, we minimize the risk of “hallucinations” by decompos-
ing complex problems into minimal, well-defined sub-tasks
with bounded inputs. Second, and more importantly, we
mitigate potential inaccuracies using a closed-loop validation
mechanism for each task. For server configurations, any LLM-
generated output is first validated using the server’s native
syntax-checking tool (e.g., lighttpd -t -f . . . ) before
deployment. For generated inputs, we leverage the target
application’s own client-side (JavaScript) and server-side val-
idation logic as an implicit and e�ective check. For protocol
filters, the generated regular expressions are verified against a
pre-defined set of both valid and invalid packet samples before
being deployed in the fuzzer.

V. DISCUSSION

A limitation of our approach is the performance over-
head inherent to our debugger-based instrumentation, which
represents a deliberate trade-o� for broader applicability.
Our expriments shows that this method introduces a latency
increase compared to uninstrumented execution. However,
this overhead is the necessary price for enabling gray-box
fuzzing on source-unavailable, physical IoT devices where
faster, traditional instrumentation is not an option. The result-
ing vulnerability discoveries validate the e�ectiveness of this
trade-o�. Future work will focus on mitigating this overhead
by exploring more e↵cient communication channels to replace
network sockets and by leveraging GDB’s tracepoint feature
to reduce communication frequency. Furthermore, CGIFuzz’s
applicability is predicated on gaining initial shell access to the
device. While our multi-pronged strategy proved e�ective for
the consumer-grade devices in our evaluation, this prerequisite
might not be met on highly-hardened systems with advanced
physical security countermeasures.

This research employs GDB for the dynamic instrumenta-
tion of binary CGI programs, establishing a general-purpose
fuzzing framework. Similar debugging tools exist for software
systems written in other languages, such as Java [68], Python
[69], and PHP [70], with corresponding debuggers like JDB
[71], PDB [72], and Xdebug [73]. We intend to expand our
framework to support testing the web systems of these diverse
ecosystems.

More broadly, the central concept of CGIFuzz is to identify
and target the weakest link in a complex system’s security
chain. This methodology, which involves analyzing a system
to find discrepancies in security posture among its components
and then focusing testing e�orts on these weak points, is
highly generalizable. We believe this approach can be extended
beyond IoT to large-scale software, operating systems, and
cloud services.

VI. CONCLUSION

In this paper, we propose CGIFuzz, a new gray-box fuzzing
framework designed for testing CGI programs of Linux-
based physical IoT devices. CGIFuzz automatically captures
CGI programs for dynamic instrumentation. To improve the
e↵ciency of IoT web fuzzing, CGIFuzz leverages LLM to
provide semantic-aware seed packets and the RFC-conformant
test input filters to filter out invalid inputs. Moreover, CGI-
Fuzz enables the e↵cient detection oracle of the command
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injection vulnerability in IoT devices. Our experiment demon-
strates the e�ectiveness of CGIFuzz, which outperforms
state-of-the-art fuzzers in both basic block coverage and
vulnerability-detecting ability. In total, CGIFuzz discovered
69 vulnerabilities across ten popular IoT devices, including 13
previously unknown vulnerabilities (9 of which were assigned
CVEs), whereas GDBFuzz found only 9 vulnerabilities in
total.
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