
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 1, FEBRUARY 2023 1

CMD: Co-analyzed IoT Malware Detection and
Forensics via Network and Hardware Domains

Ziming Zhao, Zhaoxuan Li, Jiongchi Yu, Fan ZhangB, Member, IEEE , Xiaofei Xie, Haitao Xu,
Binbin Chen, Member, IEEE

Abstract—With the widespread use of Internet of Things (IoT) devices, malware detection has become a hot spot for both academic and
industrial communities. Existing approaches can be roughly categorized into network-side and host-side. However, existing network-side
methods are difficult to capture contextual semantics from cross-source traffic, and previous host-side methods could be
adversary-perceived and expose risks for tampering. More importantly, a single perspective cannot comprehensively track the multi-stage
lifecycle of IoT malware. In this paper, we present CMD, a co-analyzed IoT malware detection and forensics system by combining
hardware and network domains. For the network part, CMD proposes a tailored capsule neural network to capture the contextual
semantics from cross-source traffic. For the hardware part, CMD designs an entire file operation recovery process in a side-channel
manner by leveraging the Serial Peripheral Interface (SPI) signals from on-chip traces. These traffic provenance and operating logs
information could benefit the anti-virus countermeasures for security practitioners. By practical evaluation, we demonstrate that CMD
realizes outstanding detection effects (e.g., ∼99.88% F1-score) compared with seven state-of-the-art methods, and recovers
96.88%∼99.75% operation commands even if against adaptive adversaries (that could kill processes or tamper with operation log files).
A by-product benefit of such an external monitor is CMD introduces zero latency on the IoT device, and incurs negligible IoT CPU
utilization. Also, since SPI focuses on file operations, the proposed hardware trace forensics does not have the data explosion problem
like previous work, e.g., recovered logs of CMD only take up limited extra space overhead (e.g., ∼0.2 MB per malware). Furthermore, we
provide the model interpretability for the capsule network and develop a case study (Hajime) of the operation logs recovery.

Index Terms—IoT malware detection, forensic analysis, SPI bus, multi-stage lifecycle

F

1 INTRODUCTION

MALWARE continues to be prevalent in Internet infras-
tructure nowadays and has drawn the attention of

many security professionals [1]–[8]. Although malware is
not a new threat, the boom in the Internet of Things (IoT)

Manuscript received February 22, 2023; revised July 30, 2023. This work
was supported in part by National Natural Science Foundation of China
(62227805, 62072398, 62172405), by SUTD-ZJU IDEA Grant for visiting
professors (SUTD-ZJUVP201901), by National Key R&D Program of China
(2020AAA0107700), by Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, by Zhejiang Key R&D Plan (2021C01116), by Leading Innovative
and Entrepreneur Team Introduction Program of Zhejiang (2018R01005),
by Research Institute of Cyberspace Governance in Zhejiang University,
by National Key Laboratory of Science and Technology on Information
System Security (6142111210301), by State Key Laboratory of Mathematical
Engineering and Advanced Computing, and by Key Laboratory of Cyberspace
Situation Awareness of Henan Province (HNTS2022001). (Corresponding
author: Fan Zhang)

• Ziming Zhao, Fan Zhang, and Haitao Xu are with the College of Computer
Science and Technology, Zhejiang University, Hangzhou, 310027, China.
is also with ZJU-Hangzhou Global Scientific and Technological Innovation
Center, 311200, with the Key Laboratory of Blockchain and Cyberspace
Governance of Zhejiang Province, 310027, with Jiaxing Research Institute,
Zhejiang University, 314000, and with Zhengzhou Xinda Institute of
Advanced Technology, Zhengzhou, 450001, China. He is a visiting professor
at the Singapore University of Technology & Design (SUTD). E-mail:
{zhaoziming, fanzhang, haitaoxu}@zju.edu.cn.

• Zhaoxuan Li is with the State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
100093, China, and also with the School of Cyber Security, UCAS, Beijing,
100049, China. E-mail: lizhaoxuan@iie.ac.cn.

• Jiongchi Yu and Xiaofei Xie are with the School of Computing and
Information Systems, Singapore Management University, Singapore
188065. E-mail: jcyu.2022@phdcs.smu.edu.sg, xfxie@smu.edu.sg.

• Binbin Chen is with Advanced Digital Sciences Center, Singapore,
Singapore, 138632, and with Singapore University of Technology and
Design, Singapore, Singapore, B96049. E-mail: binbin chen@sutd.edu.sg.

broadens and amplifies its attack surface. In other words,
the recent surge in embedded device adoption and the IoT
revolution is rapidly changing the malware landscape. Un-
fortunately, compared to desktop and mobile, IoT devices are
often highly vulnerable due to limited resources, improperly
configured, unpatched, and headless nature (e.g., lack a
graphical user interface), thereby they might be used to
create large, powerful botnets [9]. Most famously, Mirai was
used to launch vast volumetric DDoS [10], e.g., Dyn (a DNS
provider) suffered a 1.2 Tbps attack. Recently, the new variant
Hajime has come into view of the security community as it
infected no less than millions of devices based on the P2P
protocol [11]. Although Hajime has not launched any DDoS
attacks to date, it could become a severe threat if its full
potential is realized.

To detect malware, researchers present a series of so-
lutions with respect to the network-side or host-side. On
the one hand, the former intends to profile the network
traffic fingerprint when the IoT devices are accessed [12]–
[14]. On the other hand, the latter aims to detect malware
based on the runtime information, such as the operation
log [15], system call [16], and performance counters [17]–[19].
Although these methods have achieved good results, there
are some limitations when security practitioners put most
existing proposals into practice. We summarize them as the
following challenges.

¬ Lack of lifecycle tracking for IoT malware. Previous
research reveals the threat lifecycle of IoT malware, which
involves the infection vectors, payload properties, persistence
methods, capabilities, C&C infrastructure, etc [9]. Either
the network-side or host-side approaches can only provide

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2 BACKGROUND AND MOTIVATION 2

insights into the partial life cycle of the IoT malware. For
instance, the network-side methods are not enabled to
precisely locate the malicious script path and grasp the
concrete behavior, e.g., binary file execution. While the host-
side methods may not know the provenance of malicious
binary and how it was planted, such as scanning and
infection stages. We will introduce the detail of the IoT
malware lifecycle and our motivations in § 2. Incomplete
information may hinder effective anti-virus countermeasures,
or lead to the semantic gap [20], [30] between the model
inference results and operations of the network administrator.
Furthermore, there are still some challenges in network-side
or host-side unilaterally.

 Hard to capture contextual semantics from cross-source
traffic. The previous network-side methods generally propose
to discover malicious interactions at the session level or
source level. They provide a local characterization of traffic
patterns but are not very applicable to IoT-centralized net-
work topologies. For example, Hajime [11] utilizes the peer-
to-peer (P2P) distributed hash table (DHT) to disseminate
software updates to its bots. This means that it is difficult
to capture these contextual semantics from the session-level
or source-level traffic. Moreover, producing a dataset with
session-level or source-level labels is inappropriate and labor-
intensive in this scenario, e.g., it is not easy to define the P2P
node lookup traffic as benign or malicious.

® Host-side analysis could be adversary-perceived and expose
risks for tampering. Using host-side analysis to obtain details
of malware is a viable scheme, such as causality analysis
for system logs [21]–[25]. Some investigation approaches
will adopt system hooking or adding extra logic [26] as
Anti-Viruses core processes usually run with administrator
privileges [27]. However, these proposed techniques have
some limitations. On the one hand, these above processes
could be adversary-perceived, e.g., the attacker may detect
the existence of a running monitor by checking some
dynamic fields [28]. On the other hand, internal monitors
(such as the ones using existing hardware features) are prone
to be subverted, e.g., the attacker could try to inject fake
state data into the system [29]. If leveraging hardware design
knowledge to develop an external monitor, such as a bus-
connected System-on-a-Chip (SoC), it will tend to be tamper-
proof [30].

In this paper, we advance a comprehensive solution
to bridge the network-side and host-side. To this end,
we present CMD, a co-analyzed system by combining the
network with hardware domains to track the IoT malware
lifecycle (coping with the challenge ¬). Among them, the
network-side focus on detecting malicious behaviors while
the host-side emphasizes fine-grained forensic analysis.
Moreover, we design a tailored capsule neural network [31]
to extract cross-source contextual semantics and identify the
attack traffic (coping with the challenge). For the host
side, we propose an entire file operation recovery process by
leveraging the Serial Peripheral Interface (SPI) signals from
on-chip traces. This side-channel-manner forensic analysis,
as an external monitor, will not be perceived by the adversary
and has the advantage of tamper-proof properties (coping
with the challenge ®).

In a nutshell, we make the following contributions:

• We carefully examine the problems in the current
IoT malware landscape and propose a novel system,
named CMD, to achieve efficient detection and fine-
grained forensics.

• For the network part, CMD presents a capsule neural
network to identify the malicious behavior to adapt
to the cross-source traffic characterization.

• For the hardware part, CMD leverages the SPI bus to
monitor and extract the on-chip traces. And we design
the inlined operating logs recovery method to benefit
the anti-virus countermeasures. Moreover, this side-
channel-manner hardware forensics process will not
be perceived by adversaries and it is tamper-proof.

• By practical evaluation, we demonstrate that CMD
realizes the predominant traffic detection effect (e.g.,
∼99.88% F1-score), compared with seven state-of-the-
art (SOTA) traffic classification models. Also, CMD
recovers 96.88%∼99.75% operation commands, even
if against adaptive adversaries (that could kill pro-
cesses or tamper with operation log files). Particularly,
the recovered logs only take up limited extra space
overhead (e.g., ∼0.2 MB per malware). Results in the
integration test show that CMD introduces negligible
CPU utilization in the IoT device. In addition, we
conduct a case study of the Hajime attack for log
recovery, and interpretability experiments for the
capsule network to provide deep insights.

2 BACKGROUND AND MOTIVATION

In this section, we give a brief overview of Mirai’s operation
to provide a background on IoT malware. We then discuss
the motivation behind our proposed system.

Background. Different from desktop and mobile malware,
IoT malware can be a bigger threat given its limited resources,
improperly configured, unpatched, and headless nature (e.g.,
lack a graphical user interface) [9]. In addition, IoT malware
has already incorporated advanced polymorphic and anti-
analysis tactics such as self-induced malicious script deletion,
process killing, or system log tampering [61]–[64].

The summary of Mirai’s operation [10] is shown in
Figure 1, which contains multiple phases. First, the com-
promised device performs scanning to find new vulnerable
devices, and a brute-force login will be conducted as soon as
identifying the potential victim. Then, it will send the victim
device IP and associated credentials to a hardcoded report
server after successful login. Subsequently, a separate loader
program asynchronously infected the device by determining
the underlying system environment. Next, this victim device
downloads and executes the architecture-specific malware
to complete the infection. Finally, these bots will listen for
attack commands to launch DDoS attacks, etc.

Motivation. As mentioned above, the IoT malware in-
volves multi phases [10] in its lifecycle [9], including ¬

scanning and brute-force, report server, ® loader program,
¯ downloading and executing, ° command & control
(C2) and attack. For early detection, the traffic analysis
techniques are more concerned with phases ∼¯ before
the attack is launched. However, the identification results
only provide users with which flow is malicious without
fine-grained investigation such as detailed script location

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 DESIGN DETAILS OF CMD 3

Report
Server

Loader

⑤ Command
& Control

A
tt

ac
ke

r

Infrastructure

T
ar

ge
t

Newly infected
device

Compromised
device

① Scanning

② Report

③ Dispatch

④ Load

DDoS DDoS

Fig. 1. The infection process of Mirai.

in the devices. The host-side technologies enable runtime
information analysis based on the system API call (or logs)
yet lack the mastery of the infection provenance. If we could
bridge the network-side and host-side, more attack details
will be collected to facilitate the anti-virus countermeasures
in the entire IoT ecosystem. This is the main motivation to
combine the network and hardware domains.

Furthermore, our design principles for network and
hardware parts are also derived from the latest trends in
IoT malware nowadays. (i) For the network part, recent IoT
malware tends to be decentralized manner based on P2P
protocol so that their dissemination process could be hidden
in multiple sessions and even multiple sources. Therefore, we
develop the tailored feature map production to capture cross-
source contextual semantics. This process naturally correlates
adjacent packets from the arrival sequence, which is different
from the typical traffic identification solutions such as session-
level or flow-level. Then, based on the generated feature map,
we leverage the capsule neural network to extract those key
behaviors manifested by malicious events.

(ii) For the hardware part, the existing forensic analysis
could be adversary-perceived and expose risks for tampering.
The adversary perception refers to the attacker who could
realize the existence of a running monitor by checking
patterns of some dynamic fields [28]. Subsequently, they may
perform a series of tampering to disrupt normal operations
or evade detection [29]. That is to say, internal monitors (such
as the ones using existing hardware features) are prone to be
subverted, while external monitors, such as a bus-connected
System-on-a-Chip (SoC), tend to be tamper-proof [30].

An observation is that the evolution of IoT malware
tends to use many persistence methods, such as installing
themselves as either a service, a startup script, a system
module, or a backdoor [9]. This persistent malware usually
implants malware viruses into the Electrically Erasable
Programmable Read-only Memory (EEPROM) instead of
in-memory to achieve persistence on IoT devices. In addition,
even typical malware that infects Random Access Memory
(RAM) will perform a series of file operations on Read
Only Memory (ROM). For example, Mirai can read the
executable binary into RAM for malicious activities, while it
also involves some operations on ROM such as using cat to
analyze architecture (e.g., e machine field); using wget, tftp,
or echo to transfer the payload [32]. These file operations on
ROM can be captured by Serial Peripheral Interface (SPI), so
we intend to leverage SPI signals to analyze on-chip traces.

3 DESIGN SPACE AND THREAT MODEL

Problem Space. The vulnerabilities of IoT devices are mainly
in terms of two aspects: (i) The attackers access the IoT
devices and invade them by remote exploitation or default
credentials, such as weak passwords. Subsequently, the
malicious loader program or malware binary could be
implanted through the network. (ii) The malware programs
in compromised devices execute the pre-designed commands
to complete the infection. Among them, the former usually
produces some corresponding network traffic fingerprints.
And the latter mainly involves a series of file operations [10],
[11], e.g., file creation, writing, permission modification, and
self-induced deletion. Therefore, the main goal of CMD is to
detect the aforementioned malicious behaviors and forensic
analysis to report operation details.

Adversary Model. We consider strong adversaries that
adopt dynamic attack strategies with abundant IoT malware
resources. On the one hand, the attackers can access IoT
devices and implement malicious activities, such as brute-
force password cracking and ARP sniffing. On the other
hand, they could implant malware loader and binary into
the IoT devices’ built-in chips to achieve infection. We
consider centralized IoT malware (e.g., Mirai [10]), and also
decentralized ones (e.g., Hajime [11]).

For defenders, the hardware access of the IoT device and
its traffic are available. However, a single perspective may
lack a complete picture of the attack (i.e., the lifecycle of
malware). Specifically, if only the network-side traffic is used
for analysis, it may not be possible to grasp the infection
location and the specific malicious behaviors performed by
the malware on the device. While only the host-side forensics
lacks knowledge of the attack source, such as who performs
the brute force and where the executable binary is from.
Therefore, we tend to combine the network and hardware
domains to advance malware detection and forensics. Mean-
while, we do not assume additional collaborations from other
Internet entities, such as IP blacklists provided by security
vendors.

Assumptions. We explain some assumptions here. Given
the fact that the hardware-part design of CMD needs to
collect SPI signals for the protected device, so physical
access is required. We admit that physical access may not be
convenient sometimes, but as a novel external monitor, CMD
can bring new directions and perspectives for forensic anal-
ysis. Meanwhile, a feasible direction is to devise integrated
customized solutions for industrial production to advance
this side-channel-manner analysis. Furthermore, we intend
to enable both network traffic detection and hardware trace
analysis before infection to avoid missing some malicious
behavior (the discussion of data explosion is in § 4.1 and
the evaluation of log data overhead is in § 5.5). In fact, the
assumptions about the active state of the CMD are similar to
typical anti-virus software, which practitioners are usually
running anti-virus programs in advance to detect potential
malware [33]–[35].

4 DESIGN DETAILS OF CMD
In this section, we first introduce the high-level detection
logic of CMD. Then we elaborate on the design details in
terms of the hardware part and network part.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 DESIGN DETAILS OF CMD 4

Fig. 2. The overview of CMD. It combines both the hardware and network perspectives.

4.1 Overview
In Figure 2, we depict the architecture overview of CMD,
including the hardware trace perspective and network traffic
perspective. (i) Hardware perspective: Consider a running
IoT device, in which the Serial Peripheral Interface (SPI) bus
can be used to dump content for the Flash chip. We connect
the SPI bus in parallel with a logic analyzer that parses the
digital signals to the Flash traces. The Flash traces could
be used to structure the file system (e.g., JFFS2 [41]) and
recover the operating system logs, thereby realizing the host-
side analysis. (ii) Network perspective: An upper computer is
employed to capture traffic through the device. As a network-
side detection, it can quickly detect malicious behavior in
communication so as to cooperate with the host-side analysis
to tackle the multi-stage IoT malware.

Specifically, we provide an illustrative explanation of
detection logic in Figure 3. We feed the network traffic to a
tailored capsule network to identify attacks. The IoT device
will run normally if the traffic classification result is “benign”.
Otherwise, the infected sources will be reported to the anti-
virus software when the model reports malicious behaviors.
Meanwhile, the hardware-part forensic analysis is designed
to recover file operation logs, which could provide fine-
grained intrusion information (e.g., location and behavior)
to benefit the anti-virus countermeasures. Overall, CMD
identifies the malicious behaviors of IoT malware lifecycle
in a co-analyzed manner from network traffic and hardware
traces.

Notably, running hardware trace analysis does not need
to wait for the network traffic alarm, instead, both network
traffic detection and hardware trace forensics are active
before infection (as stated in assumptions of § 3), so as
to avoid missing some malicious behavior. Readers may
concern about whether the long-term collection will cause
the forensic data explosion, which is mentioned in previous
research [23], [36], [37]. We clarify here that the hardware
part of CMD is designed to focus on recovering file oper-
ation commands (such as wget, cat, and other commands
commonly used by malware) and non-volatile data content
and file storage locations. Compared to previous work that
analyzes causality analysis graphs of system kernel calls,
these logs generated by CMD do not take up much space,
e.g., the forensic analysis results only occupy ∼0.2 MB space
overhead for each malware in § 5.5, which is acceptable.

4.2 Design of Network Part
We introduce here the network-part design used to detect
malicious traffic. Our intention is to capture the contextual

Positive

Negative

File operation logRecover

Anti-virus actions

Alarm

Flash
trace

C
o
m

p
ro

m
ise

d

so
u
rces

Location &
behavior

Network
traffic Capsule neural network

Network
traffic Capsule neural network

Fig. 3. The high-level detection logic of CMD.

Fig. 4. The cross-source traffic feature map production.

semantics of traffic packets to discover attack behaviors at
various stages of the IoT malware.

Traffic Capture and Preprocessing. The protected IoT
device with CMD captures the passing traffic (based on
libpcap library) and mirrors them to the upper computer.
Note that the traffic will be temporarily stored in the volatile
memory regions (e.g., \tmp in Linux) that will not produce
interfering SPI signals in subsequent hardware forensics.
On the upper computer, it runs tshark API to capture the
raw packets. Considering the malicious behaviors could
be from the different sessions even various IPs (e.g., P2P
broadcast), we manufacture traffic into multiple snapshots in
order of arrival timestamp to form a series of feature maps.
As Figure 4 shows, the PCAP file will be split according to
the number of packets Np. The last snapshot will be padded
with zero if it is not enough Np packets. We truncate the
first Nb bytes in each packet, so that a series of Np ×Nb (e.g.,
512× 512) feature matrixes could be generated.

Model Architecture. To characterize the contextual se-
mantics of packets in malicious traffic, we leverage the
capsule component to design our model. In Figure 5, the
architecture mainly contains five parts, namely input, convo-
lution, primary capsule, label capsule, and fully connected.
Specifically, the 512× 512 input is concatenated with three

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 DESIGN DETAILS OF CMD 5

convolutional layers (with the ReLU activation), whose
feature maps are [252×252×4], [61×61×64], [18×18×256]
respectively. The Ch×Cd×Cc output (i.e., [18×18×256]) of
convolution expresses the activities of local feature detectors,
and will be fed to the primary capsule layer.

The primary capsule layer includes 8 parallel convolution
units whose kernel is 9×9, the stride is 2, and the out channel
is set Pc = 32. It generates Ph × Pd × Pc capsule outputs
(each output is an 8D vector) and its receptive fields overlap
with the location of the capsule center. Particularly, each
capsule of the Ph × Pd grid in the same channel shares the
weights.

The label capsule layer maintains one 16D capsule for
each classification label. Between the primary and label
capsule layers, it is equipped with a routing mechanism
(clarifying subsequently) iteratively to build appropriate
connection weight. The output of the label capsule layer
can be used to classify result prediction, as well as be fed to
the fully connected layer for reconstruction (more details in
the loss function section).

Dynamic Routing between Capsule Layers. The r-
iteration (i.e., τ ∈ {1, · · · , r}) routing mechanism is shown
in Algorithm 1, the output ui of a primary capsule i will
be multiplied by a weight matrix Wij to get the “prediction
vectors” ûij for a label capsule j, i.e., ûij = Wij × ui. For
label j, sτj =

∑
i c
τ
ij ûij refers to the weighted sum over

all ûij at the τ -th iteration, where the cτij are coupling
coefficients between capsule. Particularly, it is calculated
as “routing softmax” cτij = Softmax(bτij) =

exp(bτij)∑
k exp(bτkj)

, and
bτij denotes the log prior probabilities for primary capsule i
should be coupled to label capsule j. Therefore,

∑
k c

τ
kj = 1

is satisfied. Furthermore, the magnitude (i.e., 2-norm) of
the label capsules’ output vector is associated with the
probability of the represented category. Specifically, it will
be mapped by a non-linear “Squash” function described in
Eq. (1) to ensure that short vectors get shrunk to almost zero,
and long vectors get shrunk to a length slightly below 1.

aτj =
‖sτj ‖

2

1 + ‖sτj ‖
2

sτj
‖sτj ‖

, ‖sτj ‖ =
√∑

k∈[1,Lp]
sτj [k]

2 (1)

Among them, aτj is the squashed vector of capsule j at
τ -th iteration. During iteration, the probability bτij will be
updated based on the dot product of the current result aτj ,
thus making the label capsule focus on the prediction vectors
ûij that coincide with the direction of its output vector.

bτij = bτ−1ij + aτ−1j · ûij , b1ij = 0, τ ∈ [1, r] (2)

All initial probabilities (b1ij) are set to zero, so that each
primary capsule’s output is initially sent to all label capsules
with equal probability. After r iterations, each label capsule
will output a 1 × Lp vector vj (i.e., vj = arj), which carries
potential information from traffic features such as semantics.
The predicted label Cpre is represented as the capsule with
the maximum-magnitude outputs.

Cpre=argmax
j

Softmax(‖vj‖)=argmax
j

exp(‖vj‖)∑
kexp(‖vk‖)

(3)

Loss Function.In Figure 5, the loss function includes two
parts: (i) the reconstruction loss Lr of the fully connected

Fully connected
layer

Fh× Fd

Primary capsule layer

Label capsule
layer

Ph× Pd× Pv

2× Lp

1
×

N
p
×

N
b

Softmax

Predict label

Lall =γ · Lr (MSE) + LkReshape (Np× Nb× 1)Reconstruction

λ

Fig. 5. The architecture of traffic detection model based on capsule
network.

Algorithm 1 Function Routing(ui, r)
Require: Output ui of primary capsule i, number of iterations

τ
Ensure: The predict label Cpre of instance X

1: ûij←Wijui, b1ij←0 for all primary and label capsule i, j
2: for all label capsule j do
3: for all τ ∈ {1, · · · , r} do
4: cτij ← Softmax(bτij) for all capsule i
5: aτj ← Squash(sτj) = Squash(

∑
i c
τ
ij ûij) (c.f., Eq. (1))

6: bτ+1
ij ← bτij + aτj · ûij for all capsule i

7: end for
8: end for
9: return Cpre ← Label(‖vj‖) = Label(‖arj‖) (c.f., Eq. (3))

layer and (ii) the sum of the predicted loss Lk for each label
capsule k.

Lall=
∑

k
Lk+γLr, Lr=‖X, X̃‖2=

√∑
i
(Xi−X̃i)2 (4)

where γ = 5e-4 is used to balance the numerical difference
between the two losses. The reconstruction loss refers to the
`2 distance between the output X̃ from the fully connected
layer and the flattening vector of the input sample X . For
the predicted loss, we intend to give a significant magnitude
for the output vector of the label capsule if and only if the
prediction is the ground-truth label k. Therefore, we set the
separate margin loss Lk for each label capsule k:

Lk=Tk ·max(0,µ0−‖vk‖)2+λ(1−Tk)·max(0,‖vk‖−µ1)
2 (5)

where Tk = 1 if the inference result is right. The thresholds
µ0 = 0.9 and µ1 = 0.1 refer to acceptable differences to
guide the model to more stable and rapid loss convergence.
Meanwhile, the λ = 0.5 down-weighting of the loss for
misidentified categories stops the initial learning from shrink-
ing the activity vector lengths of all label capsules.

Details in Model Training and Testing. In the model
training phase, we slice natively the dataset according to
the timestamp to form a series of feature maps for input.
Those feature maps that contain malicious behavior are
considered positive instances. Some hyperparameter settings
reference the batch size = 10, the epoch is set to 50, and
the learning rate is 1e-3. During testing, the trained model
outputs either “benign” or “malicious” for the test samples.
If the inference result is malicious, then the timestamp and IP
in the corresponding feature map are recorded, and the
information can facilitate anti-virus countermeasures, as
discussed in § 4.1.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 DESIGN DETAILS OF CMD 6

(a) SPI signal
digitization
(instruction)

File
 operations

05 f1100 05 00 0506 00 02 a1 a2 a3 f12 f1M 04…

Scan
registers

AddressWrite enable
instruction

A written content
segment into Flash

Write
disable

05 00

Continue to
scan registers

(b) Flash
trace

(c) Structure
file system f11 f12 f13 f21... f1M ... f23 … fp1 fpM...

Split trace

…

Creation Deletion Read Modification …

0x05 Status
register read

0x04 Write
disable

0x06 Write
enable

0x02 Page
program …

 jffs2_raw_inode
JFFS2 file system

 jffs2_raw_dirent

 jffs2_raw_inode
JFFS2 file system

 jffs2_raw_dirent

(d) Operation
log recovery Writing

0x01 Write
status register

0x03 Read
data

…

Link

Fig. 6. Processing pipeline of the hardware part.

4.3 Design of Hardware Part

The hardware part is designed to externally recover the
operation log in the file system. The so-called “externally
recover logs” refers to the external monitor (e.g., leveraging
SPI signals), not the internal monitor, which echoes back to
the challenge ® in § 1 (so as to make the adversary impercep-
tible and tamper-proof). We clarify here the hardware part
processing in Figure 6.

Collect the Digital Signals. To acquire digital signals
from the Flash chip of the IoT device, we connect the logic
analyzer with the pins of the SPI bus in parallel. The logic
analyzer lies as a physical probe that mounts on the SPI pins
and performs periodic sampling with the frequency Fl. Note
that Fl > 2 × Fmaxo should be satisfied according to the
Nyquist-Shannon sampling theorem, where Fmaxo denotes
the maximum frequency of the original signals. Particularly,
according to product reports of the chip manufacturer, the
maximum frequency of common SPI Flash chips is 80∼133
MHz [38]. Modern logic analyzers support a sampling rate of
500 MS/s [39], which means that it could achieve 3∼6 times
oversampling (satisfies Nyquist-Shannon sampling theorem).
We set Fl = 500 in experiments, and these sampling data
will be saved in the upper computer.

Extract the Flash Traces. The collected digital signals
mainly consist of the chip instructions 1 and the content
written into Flash (i.e., the non-volatile data). The chip
instructions are related to the chip type and the physical state.
For instance, the W25Q128FV [40] chip we used has read
status register instructions shown in Figure 7. The instruction
is entered by driving /CS low and shifting the instruction
code “05h” for Status Register-1, “35h” for Status Register-2,
or “15h” for Status Register-3 into the DI pin on the rising
edge of CLK. The status register bits are then shifted out
on the DO pin at the falling edge of CLK with the most
significant bit (MSB) first, as shown in Figure 7.

Fig. 7. The write status register-1/2/3 instruction.

1. The chip instructions here refer to the SPI instruction set and are
fully controlled through the SPI bus, e.g., the W25Q128FV contains 45
basic instructions [40].

In general, we focus on the operations involving reading,
writing, etc., and some corresponding instruction hexadeci-
mal of W25Q128FV are as follows:

• 0x01: Write Status Register Instruction
• 0x02: Page Program Instruction
• 0x03: Read Data Instruction
• 0x04: Write Disable Instruction
• 0x05: Read Status Register Instruction
• 0x06: Write Enable Instruction

These chip instructions can help us analyze the SPI trace, and
we can determine the performed operations (such as “Read”
and “Write”), as well as the written non-volatile data content
and corresponding address. As shown in Figure 6(b), we can
extract the Flash traces, e.g., < a1, a2, a3 > represents the 24-
bit address and the following < f11, f12, · · · , f1M > refers
to the written content segment into Flash. Particularly, these
hexadecimal SPI instructions are related to the chip product
number, so the specific instruction hex can be confirmed
according to the corresponding chip manual.

Structure the File System. Considering the write op-
erations could be in arbitrary positions due to the Linux
blocks implementation in the kernel, we will structure the file
system to assemble segments in this step. Take the Journalling
Flash File System (JFFS2) [41] log structure as an instance 2,
which is an append-only file system. JFFS2 system has mainly
two data entities closely related to file operations, named
jffs2 raw dirent and jffs2 raw inode as Figure 6(c).

We can distinguish these two entities according to param-
etermagic+nodetype, and determine the entity length based
on parameter totlen. Among them, jffs2 raw dirent
can describe the file location (parent directory), and
jffs2 raw inode stores the file management information.
Particularly, jffs2 raw inode carries the written content of
Flash in its parameter data and uses mode to record the file
types & mode. For example, {S IXOTH: 01} denotes the exe-
cute or search permission bit for other users, and {S IWOTH:
02} denotes the write permission bit for other users [43].
Based on these two entities, we mount corresponding nodes
to structure the tree-shaped file system. Note that the content
might be compressed to reduce space overhead as shown
in Figure 8, we execute the corresponding decompression
algorithm (stored in the compr of jffs2 raw inode) to get
the complete data. For example, {LZO: 0x07}3 is the default
compression algorithm in our testbed that is very common
and popular given its quite competitive compression ratio
and extremely fast decompression [44].

2. We choose JFFS2 because it is designed from the outset for
embedded devices, and provides a robust file system to allow reliable
use of Flash devices as data storage [41]. For example, JFFS2 allows
recovery when the system has failed abnormally, without the file system
itself being left in an unusable state, even if power is disconnected at the
moment the Flash device is in the middle of being written to. Meanwhile,
JFFS2 is also widely used in IoT devices. Such as [42] mentioned that 333
firmware was collected from Axis Communications (a network camera
device manufacturer), and about 85% of them use the JFFS2 file system.
In addition, if other file systems are used, it only needs to change the
mapping process of the storage address to the file directory and the
decompression algorithm of the non-volatile data.

3. LZO is a portable lossless data compression library written in ANSI
C. It offers pretty fast compression and extremely fast decompression.
We can download the LZO executable [44] and call the interface to
perform data decompression.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5 EVALUATION 7

#define JFFS2_COMPR_NONE 0x00
#define JFFS2_COMPR_ZERO 0x01
#define JFFS2_COMPR_RTIME 0x02
#define JFFS2_COMPR_RUBINMIPS 0x03
#define JFFS2_COMPR_COPY 0x04
#define JFFS2_COMPR_DYNRUBIN 0x05
#define JFFS2_COMPR_ZLIB 0x06
#define JFFS2_COMPR_LZO 0x07

Fig. 8. The compression algorithm and corresponding hexadecimal.

Recover the Operation Logs. After structuring the file
system, we will obtain information such as the file type,
name, permission, content, access time, etc. Then these
available nodes’ information can be used to recover the
operating system behavior logs. For example, emerging
instances of entities→ file creation; changing the entities’ contents
→ file writing; mounting the entities to the garbage collection
node → file deletion. Finally, these recovered logs include
file creation, deletion, read, writing (including content),
permission modification, last modification time, soft link,
etc.

Readers could concern that whether the log recovery
process will be affected if adversaries delete the binary scripts
(i.e., the self-induced malicious script deletion mentioned in
§ 2). As long as SPI signal collection is run in advance,
CMD can recover the operation log even if the malicious
script is deleted. This is because the CMD’s hardware part
is designed as an external monitor, and all file operations
(e.g., reading, writing, permission modification, deletion, etc.)
will be recorded and saved in the upper computer (for log
recovery).

5 EVALUATION

In this section, we comprehensively evaluate CMD in terms of
the detection performance and operation recovery forensics.
For the network part, we compare SOTA methods, as well as
provide deep insights of interpretability from the aspect
of traffic behavior. For the hardware part, we evaluate
the command recovery effect and depict the file operation
portrait. Moreover, we conduct the integration test for
CMD and the overhead evaluation. Finally, a typical case
study for Hajime will be introduced. Our code is available
online4. Overall, the experiments are designed to answer the
following research questions:
RQ1. How effective is network traffic detection of CMD
compared to SOTA methods (§ 5.2)?
RQ2. Against adaptive adversaries, does hardware trace
forensics of CMD work (§ 5.3)?
RQ3. Considering the multi-stage attack, what is the
integration test effect of CMD (§ 5.4)?
RQ4. How much is the overhead of CMD on the IoT device
and the upper computer respectively (§ 5.5)?
RQ5. Can CMD analyze a typical malware example to
provide more insights (§ 5.6)?

5.1 Experiment Setup

Testbed. Our testbed is established with a wireless router
(installed the W25Q128FV Flash chip [40], SPI bus, and

4. See code repository on https://github.com/CMD-IoT/CMD/

MT7620 SoC chip that is MIPS-EL architecture), a logic
analyzer (the Saleae Logic Pro 8 [39], supports a maximum
sampling rate of 500 MS/s), an upper computer (installed
an i7-9700 CPU, a GTX 1070 GPU, and 64 GB memory), and
three client hosts. Among them, the router is the victim IoT
device, and the upper computer runs CMD. One end of the
logic analyzer is probed on pins 1, 2, 4, 5, and 6 of the Flash
chip (Figure 9), while the other end is connected to the upper
computer. In addition, the three hosts act as benign users and
attackers alternately with a period. Particularly, the wireless
router runs OpenWrt [45] which the file system is JFFS2.

Fig. 9. The physical IoT device of CMD testbed.

Datasets. The datasets used for evaluation are sum-
marized in Table 1, including network traffic from IoT-
23 [46] and binary executables from BadThings [9]. (i)
Network traffic: the IoT-23 captures malicious traffic when
running common malware such as Mirai, Hajime, Gafgyt,
etc. It contains the traffic of scanning, brute-force login, file
downloading, C2, DDoS, and so on. Together with benign
flows generated by three different IoT devices: a Philips
HUE smart LED lamp, an Amazon Echo home intelligent
personal assistant, and a Somfy smart Doorlock. All these
IoT devices are physical hardware and allow to capture real-
world communication behavior on an underlying network
with unrestricted connections. In addition, we also enrich
benign background traffic by bringing legitimate instances
from the B-Profile system5 of IDS2017 [47].

(ii) Binary executables: the BadThings possesses more
than 166K malware samples collected across a series of
popular architectures, e.g., ARM, PPC, SH4, etc. Among them,
15,906 binary executables of MIPS-EL architecture are used
for evaluation since our testbed is MIPS-EL architecture.
These samples exist in the form of executable files (e.g., ELF)
that we can run to perform the specific infection process. The
command quantities involved in each malware binary are
obtained by reverse engineering [9].

TABLE 1
The dataset of IoT malware used in our evaluation.

IoT-23
Benign Soomfy Doorlock, Phillips HUE, Amazon Echo

Malware Mirai, Torii, Trojan, Gafgyt, Kenjiro, Okiru,
Hakai, IRCBot, Hajime, Muhstik, Hide and Seek

BadThings
IoT malware corpora that contain binary executables

Baselines. Some state-of-the-art (SOTA) models are
briefly introduced as follows: (i) Mousika [48] proposes the
binary decision tree that is translated from the deep neural
network with knowledge distillation. (ii) FlowLens [49]

5. Including multiple protocols (TCP, UDP, ICMP, etc.) and multiple
applications (FTP, HTTP, DNS, NetBIOS, Mail, SNMP, SSH, etc.).

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/CMD-IoT/CMD/

5 EVALUATION 8

devises a compact representation of packet length and
adjusts the granularity of the flow’s frequency distribution
intervals to classification with machine learning (ML) models.
(iii) Whisper [50] utilizes sequential information based on
the frequency domain features to detect malicious traffic.
(iv) Kitsune [14] discovers abnormal behavior by using
AutoEncoder to examination on each packet. (v) FS-Net [51]
uses the bi-GRU model to learn sequence features and classify
common applications. (vi) ET-BERT [52] handles the raw
packets in hexadecimal and deploys a pre-trained trans-
former to represent and learn the contextualized datagram-
level information. (vii) FlowPic [53] processes packet length
and timestamp fields and converts them into pictures and
uses Convolutional Neural Networks (CNNs) to identify
traffic.

Additionally, we also explore the advantages of CMD’s
hardware trace forensics by comparing to the internal
monitor. Specifically, we choose the representative internal
monitor Syslog [54] which is a commonly used management
tool for system logs. Meanwhile, many existing forensic
schemes leverage Syslog to collect system logs [55]–[58].

5.2 Network Traffic Detection Effect (RQ1)
Compare with SOTA. We first compare the detection effect of
CMD with a series of SOTA models from ML and deep neural
network (DNN). In the experiments, the dataset division
ratio refers to train : test = 7:3, and the per-group division
& experiment will be randomly performed 10 times. The
results are summarized in Table 2, including accuracy Acc,
precision Pre, recall Rec, F1-score F1, and the Area Under
Curve (AUC). The overall detection effect, in terms of the
Acc and F1, is DNN-based > ML-based methods. For ML-
based approaches, Mousika shows more accuracy loss since it
mainly focuses on per-packet characterization. And Whisper,
as a frequency domain analysis-based model, performs better
results than FlowLens, e.g., Acc of the former is 97.74% and
the latter is 97.04%. Meanwhile, Whisper and Kitsune are
evenly matched in accuracy and F1-score, i.e., a ∼0.07%
difference. In five DNN-based models, the detection effect
CMD outperforms others in terms of various metrics. For
example, the F1 scores of CMD, Kitsune, FS-Net, ET-BERT,
and FlowPic are 99.88%, 97.79%, 98.74%, 99.42%, and 97.82%
respectively.

Moreover, we plot the Receiver Operating Characteristic
(ROC) curve in Figure 10. It is clear that CMD has fewer
false positives while achieving a higher true positive rate.
For the Area Under Curve (AUC) metric in Table 2, the
models refer to CMD > ET-BERT > FS-Net > Kitsune >
FlowPic > Whisper > FlowLens > Mousika. ET-BERT is
a competitive baseline given it is based on a pre-trained
large model, while it needs more inference time as stated in
§ 5.5. Particularly, FlowPic also converts traffic to pictures
and leverages the CNN model for classification, but there
is still some performance gap between FlowPic and the
capsule network of CMD. This can be attributed to the rich
representation of extracted feature maps and the dynamic
routing of capsule networks to capture contextual semantics.
We next provide some deep insights into network traffic
semantic identification.

Deep Insights for Interpretability. To further under-
stand how CMD identifies these attack behaviors based

TABLE 2
The traffic detection effect (%) of CMD and seven SOTA models.

Type Model Acc Pre Rec F1 AUC

ML
Mousika 96.31 96.89 95.60 96.24 96.63
FlowLens 97.04 97.62 96.31 96.96 97.37
Whisper 97.74 97.89 97.56 97.72 97.43

DNN

Kitsune 97.81 97.90 97.69 97.79 97.95
FS-Net 98.76 98.89 98.60 98.74 98.83

ET-BERT 99.41 99.13 99.68 99.42 99.52
FlowPic 97.83 97.92 97.73 97.82 97.86

CMD 99.87 99.84 99.91 99.88 99.92

Fig. 10. The ROC results of network traffic detection.

on features, we use the Integrated Gradients method [59]
from the Captum [60] to generate the attribution matrix to
provide the model interpretability. Figure 11 shows four
behavior instances involving Gafgyt, Hajime, and Mirai
three widespread malware. We provide more interpretability
instances of identification with attribution maps in our online
repository (the aforementioned URL).

In subfigure (a), we find that CMD captures a series of
snippets for ARP sniffing in Gafgyt’s traffic, e.g., around
187-th, 227-th, 311-th, 351-th packets. From subfigure (b),
it is clear that exists a very obvious traffic slice for the
UDP data field in the range 277-th∼298-th. Specifically, the
IP 192.168.100.111 sends multiple DHT broadcast packets
by Hajime and gets a response from 210.103.70.224. As
shown in Figure 12, the 288-th packet is a request for peer
host acquisition “get peer”, the message refers to {“id”:
“..E......ˆ6..¿*.+..ˆ”, “info hash”: “.*G.bo)CN...+Z.?.x#.”}. And
the 295-th packet responses the message with {“id”:
“.*.o.......KL..$].’.”, “nodes”: “.*M.:)P...L0O.” (omitted, 208
bytes in total), “token”: “[..- I.1F.........k.”}, it indicates to
return the closest node.

Figure 11(c) displays the brute-force login process of
Gafgyt, the encrypted packets of SSH and TCP appear
alternately thus the corresponding attribution map presents
intermittently salient areas, and finally, the 173-th SSH packet
achieves successful login. For Figure 11(d), the attribution
matrix presents sporadic significant pixels corresponding to
the TCP payload positions that record the transferred bytes
during download. Particularly, the 131-th packet means the
HTTP GET request, and subsequently, the multiple response
segments contain the related binary content. Noteworthy
that we find that Mirai will disguise itself as a system file,
such as ntpd, sshd, slav.x86, slav.mips, and slav.arm7 in
Figure 13.

Overall, the capsule network design realizes extracting

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5 EVALUATION 9

Fig. 11. Attribution maps are based on the network-part model in CMD. The captured contextual semantics from traffic involved four typical behaviors.

Request

{“id”}

{“info_hash”}

Response

{“id”}

{“nodes”}

{“token”}

Fig. 12. The DHT message of P2P broadcasts in Hajime.

Fig. 13. The HTTP message for binary downloading in Mirai.

the contextual semantics from the traffic feature map even in
cross-source scenarios (e.g., decentralized DHT). The above
experimental observations cater to our design intentions for
the network part of CMD.

5.3 Hardware Trace Forensic Evaluation (RQ2)
Malware Command Recovery. In the aspect of hardware
traces, we record the recovered file operations including
specific commands and corresponding quantities. We use
∼15K malware of MIPS-EL architecture to conduct and
capture the SPI traces to recover operation logs. Meanwhile,
Syslog [54] is deployed as an internal monitor to record
operations since many previous forensic schemes are based
on it [55]–[58]. To evaluate the tamper-proof capabilities of
CMD and Syslog, we consider adaptive attackers in two
types of settings. For one thing, the attacker directly kills the
internal monitor process. This is very possible, given that the

adversary could have advanced privileges on compromised
IoT devices and then typical malware does perform a series of
process kill operations [61], e.g., Hajime could involve killall
/sbin/telnetd, pkill -9 cron, etc. operations [62]. For another,
the attacker tampers with operation log files which are
mentioned in many existing works [63], [64]. Specifically,
we only save the first 50 lines of generated logs after each
malware execution to simulate adversary tampering, e.g., cat
/dev/null > /var/log/syslog, execute the malware binary, and
cat /var/log/syslog | head -n 50 > save.txt.

The results are shown in Table 3. For common seven
commands involved in malware (i.e., wget, chmod, echo,
cp, cat, mv, rm), CMD all realizes 100% recovery by the
hardware-part design. In other words, if the malware calls
the corresponding command, CMD will perceive in the
forensic analysis. About the number of each command, the
recovery results by CMD vary from ∼97% to ∼99%. When
the adversary kills the internal monitor process (the top
part of Table 3), Syslog cannot record any operations while
CMD is not affected. Specifically, CMD’s recovery results of
wget, chmod, and rm are relatively high, achieve 99.69%,
99.15%, and 99.75% respectively. Although the effect of
cp and cat is slightly inferior, the results are still more
than 97%. When the adversary tampers with the operation
log (the bottom part of Table 3), Syslog can record part
of logs, e.g., the recovery of the per-command quantity is
45%∼80%. Actually, recovery result by Syslog is related
to the adversary’s tampering strategy, for example, if the
attacker deletes more log entries, the recovery rate of Syslog
will be lower. For CMD, log tampering slightly changes the
recovery result, mainly including wget, echo, cp, and cat
given that the adversary’s tampering process may involve
these commands. Nevertheless, the impact is less than 0.5%.
Overall, CMD is tamper-proof compared to typical internal
monitors when an adversary may kill processes or modify
logs, this echoes our original design intention stated in § 2.

File Operation Portrait. Moreover, we portray the pro-
portions and relationships of these commands in Figure 14. It
is a Sankey diagram in which the depth sequence references
create → write → read → chmod → link → move →
delete. First, it is clear that a large fraction (i.e., ∼96.7%) of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5 EVALUATION 10

TABLE 3
The command recovery results against adaptive adversaries. The entry
“Recovery” calculates whether each type of command is recovered in the

corresponding malware, and the entry “Quantity” represents the
proportion of the recovered command quantity.

Kill the internal monitor process
Operation wget chmod echo cp cat mv rm

CMD Recovery 100% 100% 100% 100% 100% 100% 100%
Quantity 99.69% 99.15% 97.32% 98.07% 97.62% 98.34% 99.75%

Syslog Recovery 0% 0% 0% 0% 0% 0% 0%
Quantity 0% 0% 0% 0% 0% 0% 0%

Tampering with the log file
Operation wget chmod echo cp cat mv rm

CMD Recovery 100% 100% 100% 100% 100% 100% 100%
Quantity 99.63% 99.15% 96.88% 97.95% 97.13% 98.34% 99.75%

Syslog Recovery 91.52% 71.30% 83.27% 88.65% 90.72% 68.90% 74.29%
Quantity 76.85% 62.43% 75.67% 71.82% 69.80% 51.44% 46.07%

Fig. 14. Sankey diagram for file operations.

malware will create and write files. After writing the file,
∼42.6% malware will use chmod to modify permissions (i.e.,
a part of 57.3%, and another part is after the read), some
malware (45.9%) will call read file to further production or
obfuscation, and a fraction of the rest could perform the
delete operation (1.6%) or nothing (6.6%). Noteworthy that
a large percentage of malware will execute file deletion to
hide and destroy traces. This is one of the reasons why IoT
malware is tricky for security practitioners. We provide more
operation details by using the case of Hajime in § 5.6.

5.4 Integration Test for Multi-Stage Attacks (RQ3)
In this section, we conduct the integration test with the multi-
stage process that mimics real-world IoT attacks. It considers
6 stages (4 malicious + 2 benign) in which the adversary
deploys dynamic malware intrusion strategies. Specifically,
in Stage 1, the users perform a series of normal routine
operations (including disconnecting the wireless, connecting
into the wireless, operations of automated browsers by
Selenium [65]). In Stage 2, the administrator modifies the
configuration file (e.g., DNS) of the IoT device with authen-
tication. In Stage 3, the device suffers some scanning and
sniffing (e.g., PortSpider [66]). In Stage 4, the attacker adopts
brute-force login to password cracking (e.g., Hydra [67]).
In Stage 5, the adversary implants (via FTP transmission) the
malware scripts or binaries into the device after successful
login. In Stage 6, those malicious files will be executed on
the IoT device.

Figure 15 depicts the accuracy curve with the dynamic
attacks. Overall, CMD achieves∼99.9% Acc that outperforms
the performance of only using network traffic detection
given the hardware trace forensics could facilitate results
fine-tuning. For instance, when the network part model
incorrectly reports a legitimate HTTP download as malicious,

A
cc

u
ra

cy
 (

%
)

Stage 1 Stage 6Stage 3 Stage 5Stage 2 Stage 4

Time (s)

Scanning Brute-forceRoutine
operations

Configuration
modification

Download Execution

Fig. 15. The dynamic performance of CMD on multi-stage IoT attacks.

(a) Without detection (b) CMD

Time(s)

C
P

U
 U

ti
li
za

ti
o

n
(%

)

Fig. 16. The CPU utilization of the IoT device.

the hardware part analysis further validates the downloaded
sample and conducts forensics. If the forensics result is
benign6, this false positive will be corrected and thus improve
the integration accuracy.

In stage 1, there is almost no false positive. While in
stage 2 it emerges some slight fluctuation (∼0.1%) due to
some DNS configuration file modifications. For stages 3
and 4, CMD could stably detect >99.7% sniffing, scanning,
and brute-force behaviors. However, the identification effect
shows some improvement in stages 5 and 6 since the
corresponding file operations are verified by SPI traces. In
general, our co-analyzed design from network and hardware
domains could cope with the multi-stage malware lifecycle
and bridge the detection and forensics.

5.5 Overhead Evaluations (RQ4)
To further analyze the overhead introduced by CMD, we
measure here the CPU utilization and time/space overhead.

CPU Utilization of IoT Device. Figure 16(a) shows the
scene (including benign and malicious behaviors) without
detection whose CPU utilization is universal in 10%∼70%.
Particularly, the CPU utilization reaches about 100% at
t = 210 due to suffering brute-force password cracking.
Figure 16(b) refers to that uses CMD to detect malware
and forensic analysis, and its CPU curve is very similar
to Figure 16(a) that indicates CMD introduces negligible CPU
utilization.

The Overhead of Network Traffic Detection. For the
network traffic detection part of CMD and seven baseline
models (§ 5.2), we measure model inference time. Note that
they are all running on the upper computer instead of IoT
devices. As illustrated in Figure 17, the inference time of
the ML-based model is indeed less than DNN-based. Three
ML-based methods take about <1ms. Among the DNN-
based models, CMD and FlowPic require the least inference
time (∼2.48ms), while ET-BERT has the most time overhead,
about 6.83ms. Considering that it usually has a long interval
between the infection phase and attack phase of IoT malware,
the ms-level detection latency is acceptable. Such as Mirai
infection is used to create a large-scale botnet to aggregate

6. For example, if the downloaded sample does not contain any
chmod, cat, cd commands, etc., it is most likely not malware [61].

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6 DISCUSSION 11

the ability for bandwidth overflow, while the attack launch
depends on the specific purpose. Therefore after detection
and forensics, we could perform anti-virus countermeasures
when the compromised device listens to command & control
commands. In addition, for space overhead, ET-BERT is also
the largest, requiring >500 MB, while the capsule network
of CMD is about 30 MB, which is acceptable since the model
is stored in the upper computer instead of the IoT device.

Fig. 17. Inference time for network traffic detection.

Fig. 18. Log recovery time of the hardware trace forensics in CMD.

The Overhead of Hardware Trace Forensics. For the
overhead of the hardware forensics part, we plot the time
vs. SPI signal file size in Figure 18. The log recovery time
is approximately linear with the file size, and the slight
fluctuation is because the compression ratio of the algorithm
may be different for diverse file contents. Specifically, it
takes about 0.04s to analyze 10 MB SPI signals, which is
acceptable due to usually there are not so many traces
generated (see subsequent explanation). We also measure
the space utilization for recovered logs (given previous work
mentions the data explosion problem [23], [36], [37]), and
statistical results for § 5.4 are shown in Table 4. In stage
1, we find that no SPI trace is generated. While appearing
about additional 30.45 KB of space utilization when the IoT
configuration files are modified in stage 2. This means that
routine operations that do not involve file operations hardly
incur extra space overhead. For scanning and brute-force
login, there is also no operation log required to analyze
in stages 3 and 4. When downloading and executing the
binary, it will produce corresponding SPI signals. The last
two columns in Table 4 record the occupied space by 10
malware on average. It needs ∼793.82 KB and ∼1801.96 KB
of space in stages 5 and 6. In previous works for forensic
analysis [21], [37] whose extra space is generally more than
dozens of MB, such a small space overhead for recovered
logs in CMD (∼0.2 MB per malware) is acceptable.

TABLE 4
The space overhead of the recovery log in each stage of § 5.4, the last
two columns record occupied space on average for every 10 malware.

Stage S1 S2 S3 S4 S5 S6

Size (KB) 0 30.45 0 0 793.82 1801.96

(i) Kill a series of
processes and services.

\\x7f\\x45\\x4c……

killall mips/mipsel/arm/x86_64……
pkill mips/mipsel/arm/x86_64……

………

(ii) Download the virus
script

Attacker

IoT Device

Obtain the root privileges
Execute commands to run Shell

Stage 1:
Infection

Stage 3:
Spread

Stage 2: Execution

(iii) Making malicious
executable files

(iv) Run the
malware

(v) Self-induced
deletion

Hajime

P2P Botnet

wget ftp://XX:XX@1.1.1.1/mipsel

cp /bin/busybox ./
cat mipsel > busybox

./busybox

rm mipsel
rm busybox

Avoid using
chmod

command

\\x40\\x00\\xb0……

\\x0f\\x36\\x08……

Fig. 19. Log recovery case study of Hajime attack.

5.6 Case Study of the Operation Logs Recovery (RQ5)
Motivated by the enormous potential threat of Hajime [11]
that is spread based on P2P protocol, we elaborate here
on a case study for its file operation recovery. As shown
in Figure 19, the attack process of Hajime can be divided
into three stages: infection, execution, and spread. (i) In the
infection stage, the attacker will implant the loader program
after successful login. The brute-force login process and
script transmission can be detected by the network-part
model of CMD (given the assumption of enable CMD before
infection in § 3). And the content of the loader program can
be recovered by hardware-part forensics when it is written
in the chip.

(ii) In the execution stage, it will run the pre-designed
commands consisting of closing the port, downloading the bi-
nary, etc. Among them, CMD can forensics to the file creation
and writing (wget), file creation and permission setting (cp),
file writing (cat), script content (busybox), and file deletion
(rm). Particularly, when making the malicious executable
file, it adopts cp + cat to avoid using chmod command
(existing the exposed risk). Nonetheless, these operations
will be tracked by CMD given they trigger corresponding SPI
signal generation. (iii) In the spread stage, a series of scanning
and sniffing behaviors are conducted that can be detected
in CMD based on network traffic. Overall, almost all stages
of IoT malware can be detected by CMD, which benefits
security practitioners to adopt early countermeasures before
the attack is launched.

6 DISCUSSION

Robustness and Extensibility. We admit that it exists some
imperfections in the ML model such as misclassification, yet
CMD would mitigate these problems since its co-analyzed
design. When customers have a low tolerance for false
negatives, we can improve the positive probability of the
classification or perform a model ensemble (e.g., voting result
is negative only if no positive), thereby more instances
will be verified by the hardware-part operation recovery.
The high-level detection logic in CMD can be extended
according to specific business scenarios. For example, we
could increase the priority of hardware-part forensic analysis
for security applications that centered on file operations, i.e.,
alarm immediately as soon as appear suspect SPI signal.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8 CONCLUSION 12

Limitations and Future Works. Our work has a few
limitations. (i) First, the SPI signal collection of CMD needs
the instrument for the side-channel-manner analysis, and a
feasible direction is to devise integrated customized solutions
for industrial production. (ii) Then, as part of future work,
we would explore which traffic could be analyzed in parallel
to improve efficiency in multi-device scenarios.

(iii) In addition, hardware trace collection and operation
log recovery may also be combined with existing solutions
based on the causality analysis graph [21]–[25]. For example,
a variant of CMD may be to design the hardware part as an
independent detection module that can identify malicious
operation logs. In this way, the detection results of the
network part and the hardware part can be mutually verified.

(iv) Finally, the hardware part of CMD focuses on the
on-chip file operations given the existing persistence tech-
nologies in the IoT malware landscape nowadays. For those
malware that infect memory, on the one hand, as long
as the infection process involves file operations on ROM,
corresponding SPI signals can be captured by CMD. And
for malware that infects RAM, file operations in ROM
are common during the intrusion process. For example,
Mirai [32] needs to use cat to analyze the architecture, and
use wget, echo, etc. to transfer the payload (mentioned in
§ 2). On the other hand, combining some memory detection
approaches [68]–[70] could further enhance IoT protection.

7 RELATED WORK

We explain several SOTA baseline models in § 5.1 and here
introduce briefly some other related work.

Network Traffic Detection. To profile the traffic pattern,
some works [53], [71]–[74] design supervised learning meth-
ods based on statistical features, e.g., random forests. And
some other arts utilize Markov [75], [76] or recurrent neural
networks [77]–[79] to portray the sequential features (e.g.,
packet length sequence) of attacks. For the IoT devices, Gu
et al. [12] present IoTGaze to discover the threats by sniffing
event interaction in wireless traffic. Wang et al. [80] perform
a cross-analysis for mobile companion apps to evaluate IoT
devices’ security. Wan et al. [13] introduce IoTArgos which
characterizes the communications data based on TCP/IP and
IoT protocol stacks. CMD is more concerned with capturing
contextual semantics from the cross-source traffic feature
map.

Hardware-Based Solutions. The hardware-based meth-
ods aim to extract the processor information from different
programs running on the devices. Some previous arts [17]–
[19], [81] propose to detect malware based on Hardware
Performance Counters (HPC) runtime information. The
hardware part design of CMD is different from the HPC-
based method in the following two aspects. For one thing, the
previous methods use HPC to detect malware, which is the
classification problem. Our hardware-part design focuses on
recovering operation logs for forensic analysis. Log recovery
using HPC could be difficult because the available events are
very limited (e.g., cpu-cycles, cpu-clock, L1-dcache-loads, LLC-
prefetch-misses, etc.) and the count results are usually numeric
variables. For another, more importantly, the process (e.g.,
perf tool [82]) for statistics HPC can be killed by adaptive
adversaries like that the attacker kills internal monitors

(mentioned in § 5.3). In addition, the number of available
HPCs is limited on today’s microprocessors. And HPCs rely
on the OS kernel, e.g., the measured results inside a VM differ
from the hardware. Recently, PREEMPT [83] re-purposes the
Embedded Trace Buffer (ETB) to identify malware. Costin et
al. [84] conduct a large-scale firmware analysis for embedded
devices. Different from these methods, CMD introduces a
new direction that utilizes side-channel SPI signals to recover
logs.

Forensic Analysis. For forensic analysis and attack in-
vestigation, a series of causality analysis methods [21]–[25]
are proposed based on the system events or log auditing.
Meanwhile, some technologies such as data compaction [36]
and alternative tag propagation semantics [37] are presented
to combat dependence explosion in long-term monitoring.
Moreover, Wang et al. [15] design a selection algorithm to
identify malicious parts based on the OS-level provenance.
IoTGuard [26] implements a code instrument to collect the
app’s information at runtime by adding extra logic. Pagani et
al. [85] suggest using automated algorithms to evaluate and
design memory forensics techniques. The forensics of CMD
is specially designed for the IoT malware, as an external
monitor, that cannot be perceived by adversaries and has the
advantage of being tamper-proof.

8 CONCLUSION

In this paper, we propose CMD, a novel IoT malware
detection and forensics system combining the network and
hardware domains. For the network part, CMD presents
a tailored capsule neural network to capture the cross-
source contextual semantics from the traffic feature map.
For the hardware part, CMD leverages the SPI bus to
monitor the on-chip traces to recover file operations in a
side-channel manner, such an external monitor is tamper-
proof against adaptive adversaries. CMD realizes almost the
whole-lifecycle detection that benefits security practitioners
to adopt anti-virus countermeasures before the attack is
launched. Our experiments demonstrate that CMD could
achieve remarkable detection results, take up limited space
overhead for recovered logs, and only introduce negligible
CPU utilization in the IoT device. We also provide deep
insights for model interpretability and malware operation
portrait, as well as a case study for Hajime. Our research
bridges the hardware and network perspectives which
advances the multi-stage tracking of IoT malware lifecycle.

ACKNOWLEDGMENTS

We are grateful to the reviewers for their very constructive
feedback and insightful comments.

REFERENCES

[1] E. Cozzi et al., “Understanding linux malware,” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2018, pp. 161–175.

[2] D. Kumar et al., “All things considered: An analysis of iot devices
on home networks,” in USENIX Security Symposium. USENIX,
2019, pp. 1169–1185.

[3] B. Vignau, R. Khoury, S. Hallé, and A. Hamou-Lhadj, “The
evolution of iot malwares, from 2008 to 2019: Survey, taxonomy,
process simulator and perspectives,” J. Syst. Archit., vol. 116, p.
102143, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8 CONCLUSION 13

[4] D. D. Chen et al., “Towards automated dynamic analysis for linux-
based embedded firmware,” in NDSS. The Internet Society, 2016,
pp. 1:1.1–8.1.

[5] C. Fu, Q. Zeng, and X. Du, “Hawatcher: Semantics-aware anomaly
detection for appified smart homes,” in USENIX Security Sympo-
sium. USENIX, 2021, pp. 4223–4240.

[6] T. Abera et al., “Invited - things, trouble, trust: on building trust in
iot systems,” in DAC. ACM, 2016, pp. 121:1–121:6.

[7] A. Sadeghi et al., “Security and privacy challenges in industrial
internet of things,” in DAC. ACM, 2015, pp. 54:1–54:6.

[8] S. Ahn et al., “Hawkware: Network intrusion detection based on
behavior analysis with anns on an iot device,” in DAC. ACM,
2020, pp. 1–6.

[9] O. Alrawi, C. Lever et al., “The circle of life: A large-scale study of
the iot malware lifecycle,” in USENIX Security Symposium. USENIX
Association, 2021, pp. 3505–3522.

[10] M. Antonakakis et al., “Understanding the mirai botnet,” in 2017
26th USENIX Security Symposium. USENIX Association, 2017, pp.
1093–1110.

[11] S. Herwig et al., “Measurement and analysis of hajime, a peer-to-
peer iot botnet,” in NDSS. The Internet Society, 2019.

[12] T. Gu et al., “Iotgaze: Iot security enforcement via wireless context
analysis,” in INFOCOM. IEEE, 2020, pp. 884–893.

[13] Y. Wan, K. Xu, G. Xue, and F. Wang, “Iotargos: A multi-layer
security monitoring system for internet-of-things in smart homes,”
in INFOCOM. IEEE, 2020, pp. 874–883.

[14] Y. Mirsky et al., “Kitsune: An ensemble of autoencoders for online
network intrusion detection,” in NDSS. The Internet Society, 2018.

[15] Q. Wang, W. U. Hassan et al., “You are what you do: Hunting
stealthy malware via data provenance analysis,” in NDSS. The
Internet Society, 2020.

[16] M. Graziano et al., “Needles in a haystack: Mining information
from public dynamic analysis sandboxes for malware intelligence,”
in USENIX Security Symposium. USENIX Association, 2015, pp.
1057–1072.

[17] N. Patel et al., “Analyzing hardware based malware detectors,” in
DAC. ACM, 2017, pp. 25:1–25:6.

[18] H. Sayadi et al., “Ensemble learning for effective run-time hardware-
based malware detection: a comprehensive analysis and classifica-
tion,” in DAC. ACM, 2018, pp. 1:1–1:6.

[19] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. J. Stolfo, “On the feasibility of online malware
detection with performance counters,” in ISCA. ACM, 2013, pp.
559–570.

[20] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, 2010, pp.
305–316.

[21] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “Uiscope: Accurate,
instrumentation-free, and visible attack investigation for GUI
applications,” in NDSS. The Internet Society, 2020.

[22] P. Fang, P. Gao et al., “Back-propagating system dependency impact
for attack investigation,” in USENIX Security Symposium. USENIX
Association, 2022.

[23] P. Fei, Z. Li et al., “SEAL: storage-efficient causality analysis on
enterprise logs with query-friendly compression,” in USENIX
Security Symposium. USENIX Association, 2021, pp. 2987–3004.

[24] L. Yu, S. Ma et al., “Alchemist: Fusing application and audit logs
for precise attack provenance without instrumentation,” in NDSS.
The Internet Society, 2021.

[25] Q. Wang, W. U. Hassan, A. Bates, and C. A. Gunter, “Fear and
logging in the internet of things,” in NDSS. The Internet Society,
2018.

[26] Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic
enforcement of security and safety policy in commodity iot,” in
NDSS. The Internet Society, 2019.

[27] M. Botacin, F. D. Domingues, F. Ceschin, R. Machnicki, M. A. Z.
Alves, P. L. de Geus, and A. Grégio, “Antiviruses under the
microscope: A hands-on perspective,” Comput. Secur., vol. 112,
p. 102500, 2022.

[28] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-
independent adaptive replay of application dialog,” in NDSS. The
Internet Society, 2006.

[29] L. Babun, A. K. Sikder et al., “The truth shall set thee free: Enabling
practical forensic capabilities in smart environments,” in NDSS.
The Internet Society, 2022.

[30] M. Botacin, P. L. de Geus, and A. R. A. Grégio, “Who watches the
watchmen: A security-focused review on current state-of-the-art
techniques, tools, and methods for systems and binary analysis
on modern platforms,” ACM Comput. Surv., vol. 51, no. 4, pp.
69:1–69:34, 2018.

[31] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in NIPS, 2017, pp. 3856–3866.

[32] “Mirai-Source-Code,” https://github.com/jgamblin/
Mirai-Source-Code.

[33] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok, “Avfs: An on-access
anti-virus file system,” in USENIX Security Symposium. USENIX,
2004, pp. 73–88.

[34] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: effective and explainable detection of android malware
in your pocket,” in NDSS. The Internet Society, 2014.

[35] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting
smartphone resistance to malware infection,” in NDSS. The
Internet Society, 2014.

[36] M. N. Hossain, J. Wang et al., “Dependence-preserving data
compaction for scalable forensic analysis,” in USENIX Security
Symposium. USENIX Association, 2018, pp. 1723–1740.

[37] M. N. Hossain, S. Sheikhi, and R. Sekar, “Combating dependence
explosion in forensic analysis using alternative tag propagation
semantics,” in IEEE Symposium on Security and Privacy. IEEE, 2020.

[38] Winbond.
[39] “Saleae logic analyzer,” https://www.saleae.com/.
[40] “W25Q128FV Datasheet,” https://www.pjrc.com/teensy/

W25Q128FV.pdf.
[41] W. David, “Jffs: The journalling flash file system,” in Ottawa linux

symposium, vol. 2001. Citeseer, 2001.
[42] K. Liu, M. Yang, Z. Ling, H. Yan, Y. Zhang, X. Fu, and W. Zhao,

“On manually reverse engineering communication protocols of
linux-based iot systems,” IEEE Internet Things J., vol. 8, no. 8, pp.
6815–6827, 2021.

[43] “The GNU C Library Reference Manual,” https://www.gnu.org/
software/libc/manual/pdf/libc.pdf.

[44] “LZO,” http://www.oberhumer.com/opensource/lzo/, 2017.
[45] “OpenWrt Porject,” https://openwrt.org/, 2021.
[46] “A labeled dataset with malicious and benign IoT network traffic,”

https://www.stratosphereips.org/datasets-iot23.
[47] C. I. for Cybersecurity, “Intrusion DetectionEvaluation Dataset

(CICIDS2017).” [EB/OL], 2018, https://www.unb.ca/cic/datasets/
ids-2017.html Accessed November 27, 2020.

[48] G. Xie, Q. Li et al., “Mousika: Enable General In-Network Intelli-
gence in Programmable Switches by Knowledge Distillation,” in
INFOCOM. IEEE, 2022, pp. 1938–1947.

[49] D. Barradas, N. Santos et al., “Flowlens: Enabling efficient flow
classification for ml-based network security applications,” in NDSS.
The Internet Society, 2021.

[50] C. Fu, Q. Li, M. Shen, and K. Xu, “Realtime Robust Malicious
Traffic Detection via Frequency Domain Analysis,” in CCS. ACM,
2021, pp. 3431–3446.

[51] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net: A flow sequence
network for encrypted traffic classification,” in INFOCOM. IEEE,
2019, pp. 1171–1179.

[52] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “ET-BERT: A con-
textualized datagram representation with pre-training transformers
for encrypted traffic classification,” in WWW. ACM, 2022, pp.
633–642.

[53] T. Shapira and Y. Shavitt, “Flowpic: Encrypted internet traffic
classification is as easy as image recognition,” in INFOCOM
Workshops. IEEE, 2019, pp. 680–687.

[54] “Syslog,” https://en.wikipedia.org/wiki/Syslog, 2023.
[55] S. A. Crosby and D. S. Wallach, “Efficient data structures for

tamper-evident logging,” in USENIX Security Symposium. USENIX
Association, 2009, pp. 317–334.

[56] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version
antivirus in the network cloud,” in USENIX Security Symposium.
USENIX Association, 2008, pp. 91–106.

[57] G. D. L. T. Parra, L. Selvera, J. Khoury, H. Irizarry, E. Bou-Harb,
and P. Rad, “Interpretable federated transformer log learning for
cloud threat forensics,” in NDSS. The Internet Society, 2022.

[58] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “WATSON:
abstracting behaviors from audit logs via aggregation of contextual
semantics,” in NDSS. The Internet Society, 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://www.saleae.com/
https://www.pjrc.com/teensy/W25Q128FV.pdf
https://www.pjrc.com/teensy/W25Q128FV.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
http://www.oberhumer.com/opensource/lzo/
https://openwrt.org/
https://www.stratosphereips.org/datasets-iot23
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://en.wikipedia.org/wiki/Syslog

8 CONCLUSION 14

[59] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for
deep networks,” in ICML, ser. Proceedings of Machine Learning
Research, vol. 70. PMLR, 2017, pp. 3319–3328.

[60] “Captum: Model Interpretability for PyTorch,” https://captum.ai/.
[61] H. Li, Q. Huang, F. Ding, H. Hu, L. Cheng, G. Gu, and Z. Zhao,

“Understanding and detecting remote infection on linux-based iot
devices,” in AsiaCCS. ACM, 2022, pp. 873–887.

[62] J. Haseeb, M. Mansoori, and I. Welch, “A measurement study of
iot-based attacks using iot kill chain,” in TrustCom. IEEE, 2020, pp.
557–567.

[63] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging to the
danger zone: Race condition attacks and defenses on system audit
frameworks,” in CCS. ACM, 2020, pp. 1551–1574.

[64] H. N. Noura, O. Salman, A. Chehab, and R. Couturier, “Distlog:
A distributed logging scheme for iot forensics,” Ad Hoc Networks,
vol. 98, 2020.

[65] “Selenium automates browsers.” https://www.selenium.dev/,
2023.

[66] “A lightning fast multithreaded network scanner framework with
modules.” https://github.com/xdavidhu/portSpider, 2023.

[67] “Hydra,” https://github.com/vanhauser-thc/thc-hydra, 2023.
[68] F. Pagani and D. Balzarotti, “Back to the whiteboard: a principled

approach for the assessment and design of memory forensic
techniques,” in USENIX Security Symposium. USENIX Association,
2019, pp. 1751–1768.

[69] M. Botacin, A. Grégio, and M. A. Z. Alves, “Near-memory & in-
memory detection of fileless malware,” in MEMSYS. ACM, 2020,
pp. 23–38.

[70] R. Bhatia, B. Saltaformaggio, S. J. Yang, A. I. Ali-Gombe, X. Zhang,
D. Xu, and G. G. R. III, “Tipped off by your memory allocator:
Device-wide user activity sequencing from android memory
images,” in NDSS. The Internet Society, 2018.

[71] A. Saha, N. Ganguly, S. Chakraborty, and A. De, “Learning network
traffic dynamics using temporal point process,” in INFOCOM.
IEEE, 2019, pp. 1927–1935.

[72] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding
Mobile Traffic Patterns of Large Scale Cellular Towers in Urban
Environment,” IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1147–1161,
2017.

[73] F. Liu, J. Guo, X. Huang, and J. C. S. Lui, “eBA: Efficient Bandwidth
Guarantee Under Traffic Variability in Datacenters,” IEEE/ACM
Trans. Netw., vol. 25, no. 1, pp. 506–519, 2017.

[74] C. Xu, J. Shen, and X. Du, “A Method of Few-Shot Network
Intrusion Detection Based on Meta-Learning Framework,” IEEE
Trans. Inf. Forensics Secur., vol. 15, pp. 3540–3552, 2020.

[75] M. Korczynski and A. Duda, “Markov chain fingerprinting to
classify encrypted traffic,” in INFOCOM. IEEE, 2014, pp. 781–789.

[76] M. Shen, M. Wei et al., “Classification of Encrypted Traffic With
Second-Order Markov Chains and Application Attribute Bigrams,”
IEEE Trans. Inf. Forensics Secur., vol. 12, no. 8, pp. 1830–1843, 2017.

[77] F. Ciucu, F. Poloczek, and J. B. Schmitt, “Sharp per-flow delay
bounds for bursty arrivals: The case of fifo, sp, and EDF scheduling,”
in INFOCOM. IEEE, 2014, pp. 1896–1904.

[78] Z. Zhao, Z. Li, J. Jiang, F. Yu, F. Zhang, C. Xu, X. Zhao, R. Zhang,
and S. Guo, “Ernn: Error-resilient rnn for encrypted traffic detec-
tion towards network-induced phenomena,” IEEE Transactions on
Dependable and Secure Computing, 2023.

[79] Z. Song, Z. Zhao, F. Zhang, G. Xiong, G. Cheng, X. Zhao, and
S. Guo, “I2rnn: An incremental and interpretable recurrent neural
network for encrypted traffic classification,” IEEE Transactions on
Dependable and Secure Computing, 2023.

[80] X. Wang et al., “Looking from the mirror: Evaluating iot device
security through mobile companion apps,” in USENIX, 2019.

[81] M. Botacin and A. Grégio, “Why we need a theory of maliciousness:
Hardware performance counters in security,” in ISC, ser. Lecture
Notes in Computer Science, vol. 13640. Springer, 2022, pp. 381–389.

[82] “Perf Tutorial,” https://perf.wiki.kernel.org/index.php/Tutorial,
2023.

[83] K. Basu et al., “PREEMPT: preempting malware by examining
embedded processor traces,” in DAC. ACM, 2019, p. 166.

[84] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-
scale analysis of the security of embedded firmwares,” in USENIX
Security Symposium. USENIX Association, 2014, pp. 95–110.

[85] F. Pagani and D. Balzarotti, “Back to the whiteboard: a principled
approach for the assessment and design of memory forensic
techniques,” in USENIX Security Symposium. USENIX Association,
2019.

Ziming Zhao is a Ph.D. student in Zhejiang
University, Hangzhou, China. He has published
more than 5 papers in international journals and
conference proceedings, including TIFS, TDSC,
and AAAI. His research interests include ma-
chine learning, traffic identification, and privacy-
preserving.

Zhaoxuan Li (Student Member, IEEE) is a Ph.D.
student in State Key Laboratory of Information Se-
curity (SKLOIS), Institute of Information Engineer-
ing (IIE), Chinese Academy of Sciences (CAS),
Beijing, China. He has published more than 10
papers in international journals and conference
proceedings, including TIFS, TDSC, COMNETS,
ESE, and ICWS. His research interests include
traffic identification, blockchain security, formal
methods, and privacy-preserving.

Jiongchi Yu received his bachelor’s degree from
Zhejiang University, China. He is pursuing the
PhD degree at the School of Computing and
Information Systems, Singapore Management
University (SMU), Singapore. His research fo-
cuses on traditional software testing and security
issues of cloud native infrastructures.

Fan Zhang (Member, IEEE) received his Ph.D.
degree from the Department of Computer Sci-
ence and Engineering, University of Connecticut,
CT, USA, in 2011. He is currently a Full Professor
with the College of Computer Science and Tech-
nology, Zhejiang University, Hangzhou, China,
and also with the Alibaba–Zhejiang University
Joint Institute of Frontier Technologies, Hangzhou.
His research interests include system security,
hardware security, network security, cryptography,
and computer architecture.

Xiaofei Xie received the B.E., M.E., and Ph.D.
degrees from Tianjin University. He is currently
an Assistant Professor with Singapore Manage-
ment University, Singapore. His research mainly
focuses on program analysis, traditional software
testing, and quality assurance analysis of artificial
intelligence. He was a recipient of the two ACM
SIGSOFT Distinguished Paper Awards in FSE’16
and ASE’19.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://captum.ai/
https://www.selenium.dev/
https://github.com/xdavidhu/portSpider
https://github.com/vanhauser-thc/thc-hydra
https://perf.wiki.kernel.org/index.php/Tutorial

8 CONCLUSION 15

Haitao Xu received the Ph.D. degree in computer
science from the College of William and Mary,
VA, USA, in December 2015. He is currently
an Assistant Professor with the School of Cyber
Science and Technology, Zhejiang University. His
research interests include intersection of cyber
security, privacy, and data analytics.

Binbin Chen (Member, IEEE) received the B.Sc.
degree in computer science from Peking Univer-
sity and the Ph.D. degree in computer science
from the National University of Singapore. Since
July 2019, he has been an Associate Professor in
the Information Systems Technology and Design
(ISTD) pillar, Singapore University of Technology
and Design (SUTD). He currently also holds a
joint appointment as Principal Research Scientist
at Advanced Digital Sciences Center, which is
a University of Illinois research center located

in Singapore. His current research interests include wireless networks,
cyber-physical systems, and cyber security for critical infrastructures.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3311012

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Background and Motivation
	Design Space and Threat Model
	Design Details of CMD
	Overview
	Design of Network Part
	Design of Hardware Part

	Evaluation
	Experiment Setup
	Network Traffic Detection Effect [id=R3](RQ1)
	Hardware Trace Forensic Evaluation [id=R3](RQ2)
	Integration Test for Multi-Stage Attacks [id=R3](RQ3)
	Overhead Evaluations [id=R3](RQ4)
	Case Study of the Operation Logs Recovery [id=R3](RQ5)

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Ziming Zhao
	Zhaoxuan Li
	Jiongchi Yu
	Fan Zhang
	Xiaofei Xie
	Haitao Xu
	Binbin Chen

