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ABSTRACT
Recent studies show that deep neural networks are extremely vul-
nerable, especially for adversarial examples of image classification
models. However, the current defense technologies exhibit a series
of limitations in terms of the adaptability of different attacks, the
trade-off between clean-instance accuracy and robust one, as well
as efficiency for train time overhead. To tackle these problems, we
present a novel component, named redundant fully connected layer,
which can be combined with existing model backbones in a plug-
gable manner. Specifically, we design a tailor-made loss function
for it that leverages cosine similarity to maximize the difference
and diversity of multiple fully connected parts. We conduct exten-
sive experiments against 12 representative attacks (white-box and
black-box), based on the popular dataset. The empirical evaluations
show that our scheme realizes significant outcomes against various
attacks with negligible additional training overhead, while hardly
bringing collateral damage for clean-instance accuracy.
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Figure 1: Illustrative explanation of redundant FC layer.

1 INTRODUCTION
Deep Neural Networks (DNNs) are becoming ubiquitous in practice
to deliver automated decisions such as face recognition, self-driving
cars, etc.. However, the emergence of adversarial examples (AEs)
reveals that DNNs are vulnerable to attacks. Specifically, AEs refer
to the adversaries deliberately crafting special inputs with pertur-
bation to achieve malicious purposes, such as misclassification. In
recent years, academic communities and industrial practitioners
have invested a lot of research to advance attack and defense for
DNNs. Regarding adversarial attacks, prior works can be divided
into white-box and black-box settings. The former assumes that
there is prior knowledge about the model [2], e.g., architecture and
parameters. The latter is more challenging given it only has lim-
ited information to generate AEs. Furthermore, black-box attacks
can be categorized into three types, notably, the transfer-based,
score-based, and decision-based attacks [19].

In terms of defenses, the community has proposed a series of
schemes against adversarial attacks [20]. As some leading works,
robust training methods [18] are proposed to make the classifier
adapt to small noises internally. Several defenses transform the
inputs before feeding classifier such as JPEG compression [6]. Also,
defensive distillation is used to reduce the effectiveness of AEs
on DNNs [14]. These methods have achieved some effectiveness
in previous arts, but there are still some problems when putting
existing proposals into practice. We summarize them as follows.

(i) Lacking adaptability against different attacks. Some studies
have shown that many defense methods have certain limitations,
manifested in can not be adapted to various attacks. For instance, the
defensive distillation [14] that makes the model robust to infinitesi-
mal perturbations, can be evaded by the black-box approach [15].

(ii) Bring collateral damage for clean-sample accuracy. A more
crucial problem is that existing techniques often lead to an accu-
racy loss on clean samples when improving robustness. Typical
examples are some adversarial training schemes that search for
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Figure 2: The overview of redundant FC layer.

a trade-off between clean and robust accuracy. Nonetheless, they
always exhibit an accuracy drop by 4%∼12% on clean instances, e.g.,
the “Base” row in Table 1.

(iii) Introducing significant training time overhead. Most defense
strategies require changing the training process or performing
model ensemble to copewith adversarial inputs, while these schemes
induce additional training time overhead. The overhead analysis in
§ 3.3 shows that TRADES [18] (a representative adversarial training
technology) imposes 16× the standard training time.

In this paper, we aim to enable novel defense technology that
handles the above challenges. To this end, we present redundant
fully connected (FC) layers to improve the model’s robustness. The
so-called redundant FC layer refers to a dense layer mapped to
𝑛 × 𝑐𝑙𝑎𝑠𝑠_𝑛𝑢𝑚 dimensions that will replace the typical FC layer.
Therefore, there are 𝑛 positions corresponding to the ground-truth
(GT) label. As long as either one of the 𝑛 positions presents the
largest predicted probability, the model will perform the correct pre-
diction. We provide an illustrative example in Figure 1. In subfigure
(a), we can see that the class-A sample (blue) is misclassified (penta-
gram) after attacking with a small-distance perturbation. However,
our redundant FC tends to possess multiple FC parts, e.g., two or-
thogonal boundaries in the subfigure (b). When the first boundary
(green dotted line) is attacked, the other boundary (green solid line)
can still correctly perform identification since the latter has greater
confidence. Thus, the redundant FC exhibits more robust model
boundaries in a joint manner.

In summary, this paper makes three key contributions.

• We carefully investigate the problems for current defensemeth-
ods against adversarial examples in practice and summarize
them as three key challenges.

• To tackle those issues, we propose a novel technology, named
redundant fully connected layer, to effectively improve the
model defense capabilities. Meanwhile, we integrate the cosine
similarity into the loss function to maximize the difference
and diversity among multiple parts of the redundant FC.

• We conduct extensive experiments with 8 state-of-the-art mod-
els and 12 representative attackmethods, involving the popular
image classification dataset. The empirical evaluations demon-
strate our proposal can significantly improve model robustness
(e.g., 10.01%∼89.83% for white-box attacks on CIFAR-10). More
importantly, the proposed method hardly affects clean-sample
accuracy, sometimes even slightly improving the clean ac-
curacy. Particularly, the redundant FC layer can be flexibly
adapted to various model architectures given it introduces
negligible training time overhead (<0.3𝑠).
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Figure 3: The loss function design illustration (𝑛 = 2).

2 REDUNDANT FULLY CONNECTED LAYER
2.1 Overview
In Figure 2, we depict the overall structure of the redundant FC
layer at a high level. We rethink a DNN architecture and could
decouple it into feature extraction and classification. The left part
of the figure shows a typical Resnet-34 architecture (removing the
FC layer) that performs calculations from the input to hidden layer
features, and this can be considered a process of feature extraction.
Then, on the right side of the figure is the fully connected layer,
which can be viewed as a classification module. It can be noted
that our scheme does not change the process of extracting image
semantic features for baseline models, but instead focuses on the
final classification part. Intuitively, the redundant FC layer improves
the model’s robustness by riching the positions corresponding to
the ground-truth label and increasing the difficulty of attack.

2.2 Design Details
Our intention is to improve classifier robustness against adversarial
attacks by enhancing model inference with redundant FC. There-
fore, our proposal is essentially a pluggable module that can be
combined with common model backbones.
Cascading FC. Given an image classification model𝑀 , it usually
includes operations such as convolution and pooling, and finally
maps the extracted semantic information to the predicted probabil-
ity (after Softmax) through a dense layer. As shown in Figure 2, we
can take out the architecture that from input to fc.in_feature. Then
we cascade the above architecture with the newly initialized redun-
dant FC layer. For example, we can assign a linear layer of 𝑑𝑓 ×20 as
redundant FC for a 10-classification task, where 𝑑𝑓 represents the
dimensions of fc.in_feature. After cascading, the new model𝑀

′
will

output the 1×20 vector when it is fed an instance. We only need
to perform an additional modulo 10 operation to obtain the final
classification result, i.e.,

𝑌𝑝𝑟𝑒 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀
′
(𝑖𝑛𝑝𝑢𝑡)) % 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚 (1)

where 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚 refers to the number of classes.
Loss Function Design. For classification tasks, a standard loss
function calculates the cross-entropy between the output of the FC
layer and the GT label. Our loss design for redundant FC contains
two goals: on the one hand, we intend to make every GT position of
the redundant FC dominant. Therefore, we let the one-hot vector of
the GT label slide with the step size 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚 , and calculate 𝑛 cross-
entropies, respectively. Note that the one-hot vector will connect
the all-zero vector to ensure the same size as the redundant FC,
as shown in Figure 3. On the other hand, we prefer to make each
part of redundant FC orthogonal to each other, so we introduce
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Table 1: The results (%) of 8 models on CIFAR-10 against untargeted attacks under the ℓ∞ norm and ℓ2 norm.

ℓ𝑝
Model ResNet56 TRADES RST LBGAT GM TR YOPO FGSM-AT
Attack Nor Ours Nor Ours Nor Ours Nor Ours Nor Ours Nor Ours Nor Ours Nor Ours

- BASE 94.27 94.23 ▼00.04 86.41 86.38 ▼00.03 90.95 90.98 ▲00.03 89.33 89.47 ▲00.14 88.08 88.03 ▼00.05 90.88 91.06 ▲00.18 87.16 87.13 ▼00.03 78.46 78.47 ▲00.01

ℓ ∞
no

rm
,𝜀

=
8/
25
5

FGSM 31.10 80.41 ▲49.31 57.54 83.28 ▲25.74 65.99 88.48 ▲22.49 61.67 87.06 ▲25.39 62.38 86.24 ▲23.86 58.12 82.22 ▲24.10 53.06 84.48 ▲31.42 47.32 71.60 ▲24.28
BIM 0.01 88.76 ▲88.75 52.54 84.22 ▲31.68 59.41 89.34 ▲29.93 52.92 87.88 ▲34.96 58.53 86.69 ▲28.16 49.26 80.49 ▲31.23 46.37 85.48 ▲39.11 41.29 72.56 ▲31.27
MIM 0.01 88.94 ▲88.93 53.37 84.28 ▲30.91 60.44 89.34 ▲28.90 54.56 87.90 ▲33.34 59.19 86.69 ▲27.50 51.08 80.88 ▲29.80 47.37 85.50 ▲38.13 42.26 72.64 ▲30.38

DeepFool 40.44 72.13 ▲31.69 16.64 50.10 ▲33.46 14.88 54.08 ▲39.20 8.11 48.36 ▲40.25 33.43 66.55 ▲33.12 14.53 58.69 ▲44.16 39.97 67.83 ▲27.86 36.07 49.47 ▲13.40
PGD 0.00 83.57 ▲83.57 52.79 84.15 ▲31.36 59.63 89.33 ▲29.70 53.18 87.74 ▲34.56 58.63 86.51 ▲27.88 49.70 80.48 ▲30.78 46.60 85.55 ▲38.95 41.48 72.72 ▲31.24
DIM 18.68 86.73 ▲68.05 75.96 85.83 ▲09.87 81.89 90.36 ▲08.47 78.00 88.89 ▲10.89 79.41 87.65 ▲08.24 83.03 88.69 ▲05.66 74.11 86.70 ▲12.59 70.36 77.28 ▲06.92
NES 0.00 79.94 ▲79.94 70.70 83.52 ▲12.82 72.38 86.69 ▲14.31 70.76 86.61 ▲15.85 72.37 85.73 ▲13.36 69.45 85.35 ▲15.90 61.45 84.27 ▲22.82 57.97 75.61 ▲17.64
SPSA 31.41 71.37 ▲39.96 73.55 80.87 ▲07.32 79.52 83.94 ▲04.42 73.62 83.76 ▲10.14 73.80 83.75 ▲09.95 73.74 85.85 ▲12.11 67.16 77.13 ▲09.97 59.89 77.04 ▲17.15

NATTACK 0.00 20.09 ▲20.09 60.70 72.10 ▲11.40 65.24 76.69 ▲11.45 59.33 82.33 ▲23.00 66.65 75.17 ▲08.52 56.59 76.77 ▲20.18 48.59 59.99 ▲11.40 50.22 65.61 ▲15.39

ℓ 2
no

rm
,𝜀

=
1

FGSM 39.77 84.63 ▲44.86 50.91 82.18 ▲31.27 59.05 87.98 ▲28.93 57.03 86.57 ▲29.54 59.18 86.53 ▲27.35 54.68 81.66 ▲26.98 50.46 84.43 ▲33.97 45.26 70.67 ▲25.41
BIM 0.00 89.83 ▲89.83 29.81 84.18 ▲54.37 31.85 89.18 ▲57.33 27.03 87.67 ▲60.64 39.08 87.03 ▲47.95 36.48 78.36 ▲41.88 32.56 85.73 ▲53.17 29.86 71.47 ▲41.61
MIM 0.00 82.63 ▲82.63 33.41 81.88 ▲48.47 37.55 87.38 ▲49.83 35.03 86.07 ▲51.04 42.38 86.33 ▲43.95 40.98 78.76 ▲37.78 34.76 83.83 ▲49.07 33.26 69.37 ▲36.11

DeepFool 47.97 75.63 ▲27.66 48.51 62.08 ▲13.57 49.65 71.58 ▲21.93 20.33 56.47 ▲36.14 54.98 74.03 ▲19.05 30.78 63.06 ▲32.28 53.36 72.23 ▲18.87 44.76 54.77 ▲10.01
C&W 0.00 58.33 ▲58.33 0.00 42.18 ▲42.18 0.45 45.78 ▲45.33 0.00 43.27 ▲43.27 0.00 56.33 ▲56.33 0.00 54.36 ▲54.36 0.00 55.53 ▲55.53 0.00 32.77 ▲32.77
PGD 0.00 83.83 ▲83.83 30.61 83.58 ▲52.97 33.55 89.28 ▲55.73 27.73 87.47 ▲59.74 39.28 87.03 ▲47.75 36.98 78.46 ▲41.48 33.16 85.53 ▲52.37 30.46 71.67 ▲41.21
DIM 0.87 77.43 ▲76.56 39.51 80.88 ▲41.37 46.05 86.28 ▲40.23 42.53 85.17 ▲42.64 49.88 85.13 ▲35.25 50.58 78.76 ▲28.18 43.66 82.13 ▲38.47 43.96 70.07 ▲26.11
NES 0.00 84.23 ▲84.23 66.41 83.52 ▲17.11 60.95 86.69 ▲25.74 57.90 86.61 ▲28.71 69.51 88.03 ▲18.52 62.31 83.92 ▲21.61 60.02 82.84 ▲22.83 57.03 74.18 ▲17.15
SPSA 42.84 78.52 ▲35.67 72.12 79.24 ▲07.11 79.52 83.84 ▲04.32 72.19 83.76 ▲11.57 73.79 83.74 ▲09.95 73.74 85.35 ▲11.61 67.16 78.56 ▲11.40 61.32 77.04 ▲15.72

NATTACK 11.41 55.66 ▲44.25 63.55 77.81 ▲14.26 60.95 72.41 ▲11.46 63.62 83.76 ▲20.14 62.37 79.46 ▲17.09 62.31 78.20 ▲15.89 52.87 65.70 ▲12.83 54.17 71.33 ▲17.15
Boundary 20.72 88.21 ▲67.49 76.14 85.38 ▲09.24 75.24 87.59 ▲12.35 74.04 87.02 ▲12.98 76.48 86.35 ▲09.87 77.01 86.19 ▲09.18 68.19 85.51 ▲17.32 62.37 76.97 ▲14.60

Evolutionary 17.15 59.24 ▲42.09 64.58 79.02 ▲14.44 64.02 78.31 ▲14.29 63.47 77.25 ▲13.78 64.75 79.04 ▲14.29 65.82 81.41 ▲15.59 60.27 71.24 ▲10.97 57.84 65.21 ▲07.37

cosine similarity as part of the loss function. The advantage of this
design is that when one part of the redundant FC is attacked, the
projection of the perturbation on other parts could tend to 0, thus
achieving robustness. Overall, the loss function is formally denoted
as follows. Considering the FC layer with redundant 𝑛 times, 𝑉𝑜𝑢𝑡
denotes the output of FC and 𝑉𝑔𝑡 refers to the one-hot for the GT
label. The sum of 𝑛 cross-entropies is calculated as

𝐿𝑐 =
∑︁𝑛

𝑖=1
C(𝑉𝑜𝑢𝑡 , 𝑃𝑎𝑑𝑑𝑖𝑛𝑔(𝑆𝑙𝑖𝑑𝑒 (𝑉𝑔𝑡 , 𝑖 − 1))) (2)

where C, 𝑃𝑎𝑑𝑑𝑖𝑛𝑔, 𝑆𝑙𝑖𝑑𝑒 represent the cross entropy, padding 0,
sliding with (𝑖 − 1)×𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚 steps. Also, the overall loss L is
calculated as Eq. (3).

L = 𝐿𝑐 + 𝜆 × 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑉𝑜𝑢𝑡 ) (3)

where 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑉𝑜𝑢𝑡 ) refers to the cosine similarity sum
between each pair within𝑉𝑜𝑢𝑡 , and 𝜆 denotes the weight coefficient.
Specifically, we can set 𝜆 = 2

𝑛−1 to balance the two parts of the loss,
where 𝑛 refers to the multiple of redundancy.
Training. In practice, we can choose to train the overall architec-
ture, or solely fit the parameters of the redundant FC layer. The latter
is applicable and convenient if we already have a trained model.
In this case, we can directly set requires_grad = False (PyTorch as
an example) except for the FC layer, or only pass the parameters
of the FC layer to the optimizer (e.g., SGD). In § 3.3, we produce
a series of evaluations about time overhead, and the results show
that it is readily available to directly train the redundant FC layers
based on the trained backbone parameter.

3 EXPERIMENTS
3.1 Experimental Setup
Datasets. As the popular image classification dataset, CIFAR-
10 [12] is used for evaluation. Specifically, the test set contains
10,000 images of CIFAR-10. In addition, some additional experi-
ments involving the ImageNet [11] dataset are displayed in the
online repository1, among them, we randomly select a target class
(except GT) for each image to conduct targeted attacks.
1Online repository https://github.com/Secbrain/RFC/

Baselines. We test a series of representative defense models that
cover diverse defense categories and make the evaluation as com-
prehensive as possible. We adopt the same settings as the baseline
models. Specifically, we choose 8 models including naturally trained
ResNet-56, TRADES [18], RST [3], LBGAT [4], generative models
(GM) [9], training recipe (TR) [5], YOPO [17], and FGSM-based
adversarial training (FGSM-AT) [16].
Attack Setting. We employ 12 widely used attack methods in-
volving white-box [2] and black-box (i.e., the transfer-based [8, 13],
score-based [10], and decision-based [1, 6]) to test the robustness
of models [7].

3.2 Evaluation Results
In this section, we evaluate 8 models on CIFAR-10. If no special
instructions, we use a fixed perturbation budget of 𝜀 = 8/255 for
ℓ∞ attacks and 𝜀 = 1.0 for ℓ2 attacks, with images in [0, 1], which
is consistent with previous work [7]. Table 1 shows the results of
untargeted attacks under ℓ∞ norm and ℓ2 norm. Firstly, in the 8
baseline models, the redundant FC causes clean-ACC to slightly
drop for the four models ResNet56, TRADES, GM, and YOPO by
less than 0.05%. While it also improves the clean accuracy of the
four models RST, LBGAT, TR, and FGSM-AT by 0.01%∼0.18%. This
means that redundant FC hardly brings damage to clean-sample
ACC, and even has a slight improvement sometimes.
White-box Attacks. Against FGSM, BIM, MIM, PGD, DeepFool,
and C&W six white-box attacks, we find that redundant FC indeed
improves the robustness of 8 baselines. Specifically, redundant FC
is 13.40∼88.93% accuracy higher than the typical model in ℓ∞ norm,
and increases the robust accuracy by 10.01%∼89.83% for ℓ2 norm.
Black-box Attacks. Transfer-based, score-based, and decision-
based black-box attacks are evaluated. (i) Transfer-based. We adapt
DIM to conduct the transfer-based attack and use the ResNet as
the substitute model. Under ℓ∞ norm (Tabel 1), the redundant FC
improves 68.05% ACC for ResNet and 5.66%∼12.59% for the other
seven models. Under ℓ2 norm, and redundant FC boosts accuracy
by at least 26.11%. (ii) Score-based. For NES, SPSA, and NATTACK
three score-based attacks, the redundant FC brings 4.42%∼79.94%
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Figure 4: The training time overhead.

robustness improvement under ℓ∞ norm. Under ℓ2 norm, the en-
hancement effect of redundant FC is NES >NATTACK > SPSA. (iii)
Decision-based. Two decision-based attacks only support ℓ2 norm,
the redundant FC enhances the robust accuracy by 9.18%∼67.49%
for Boundary and 7.37%∼42.09% for Evolutionary.

Overall, for different models, redundant FC improves ResNet the
most given it is naturally trained. Particularly, redundant FC has
significant resistance to white-box attacks, since it is difficult to
realize that all GT positions are attacked.

3.3 Overhead and Parameter Analysis
Training Overhead. To analyze the overhead, we measure train-
ing time for our scheme and TRADES [18] (a representative adver-
sarial training technology). All models run on the Ubuntu 20.04.1
server with Intel i7-12700K CPU, a single NVIDIA TITAN Xp
GPU, and 64 GB memory. Figure 4 displays per-epoch time over-
head based on the training data of CIFAR-10, the baseline model
is ResNet56. Among them, “Base_FC” and “Ours_FC” represent
the time to train only the FC layer, for baseline and ours. While
“Base_Full” and “Ours_Full” refer to enable all parameters trainable.
Whether it is only training FC or training all parameters, the time
overhead of redundant FC is almost the same as that of baseline, i.e.,
the gap is less than 0.3𝑠 . However, TRADES requires ∼16× training
time compared to the baseline (240𝑠/15𝑠) since it needs to perform
adversarial perturbations during training to construct the robust
model. Therefore, our proposal is time-friendly compared to exist-
ing adversarial training schemes. Note that it is also convenient
to combine redundant FC with those robust technologies, given
we can directly cascade new FC layers with the pre-trained model
and only train the FC layers. For the model scale, we count the
sum of parameters for the baseline and the combination with our
redundant FC. The former has 855,770 parameters in total and the
latter possesses 856,420, which means that the redundant FC only
imposes less than 0.1% additional parameters.
Parameter Analysis. The most significant parameter that impacts
the robustness is the multiple of redundancy 𝑛 in FC. We study
the influence of the redundancy multiple by setting 𝑛 = 1, 2, 3, 4, 5
respectively, where 𝑛 = 1 refers to the typical FC. Correspondingly,
the 𝜆 = 2, 1, 23 ,

1
2 for 𝑛 = 2, 3, 4, 5, reference § 2.2. Figure 5 portrays

the results of using the FGSM attack ResNet56 on CIFAR-10. We
find that as long as redundant FC is used (i.e., 𝑛 ≥ 2), it will bring an
essential improvement in model robustness (compared with 𝑛 = 1).
As𝑛 increases, the robustness improvement effect is gradually weak.
Overall, redundant FC indeed fundamentally enhances the model
defense capabilities against adversarial attacks, and hyperparameter
𝑛 can be tuned to achieve the desired effect.

norm, untargeted
 2 norm, untargeted

Figure 5: The influence of the redundancy multiple 𝑛.

4 CONCLUSION
In this paper, we propose the redundant fully connected layer, a
novel component that enables improving model robustness against
adversarial examples. Particularly, we design cosine similarity into
the loss function to maximize the difference and diversity of multi-
ple FC parts. The advantages are that it applies to various attack
methods, does not bring collateral damage for clean-sample ac-
curacy, and imposes negligible additional training overhead. The
empirical evaluations demonstrate the effects of our proposal with
8 defense models against 12 adversarial attacks.
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