
DDoSMiner: An Automated Framework
for DDoS Attack Characterization

and Vulnerability Mining

Xi Ling1, Jiongchi Yu2, Ziming Zhao1, Zhihao Zhou1, Haitao Xu1,
Binbin Chen3, and Fan Zhang1,4(B)

1 College of Computer Science and Technology, Zhejiang University, Hangzhou,
China

2 School of Computing and Information Systems, Singapore Management University,
Singapore, Singapore

3 Information Systems Technology and Design, Singapore University of Technology
and Design, Singapore, Singapore

4 Zhengzhou Xinda Institute of Advanced Technology, Zhengzhou, China

fanzhang@zju.edu.cn

Abstract. With the proliferation of Internet development, Distributed
Denial of Service (DDoS) attacks are on the rise. As rule-based traf-
fic analysis frameworks and Deep Packet Inspection (DPI) defense mea-
sures can effectively thwart many DDoS attacks, attackers keep exploring
various attack surfaces and traffic amplification strategies to nullify the
defense. In this paper, we propose DDoSMiner, an automated framework
for DDoS attack characterization and vulnerability mining. DDoSMiner
analyzes system call patterns of the TCP-based DDoS attack family,
then generates Attack Call Flow Graph (ACFG) by discerning the dif-
ferences between DDoS attack traffic and benign traffic. Furthermore,
DDoSMiner identifies and extracts drop nodes and pivotal TCP states
from the distinctive characteristics of attack traffic, then passes to the
symbolic execution framework for exploring variants of the DDoS attack.
We collectively analyze six types of TCP-based DDoS attacks, construct
the corresponding ACFG, and identify a set of attack traffic variants.
The attack traffic variants are evaluated on the widely used Network
Intrusion Detection System (NIDS) Snort with three popular rule sets.
The result shows that DDoSMiner indeed discovers the new DDoS attack
trace, and the corresponding attack traffic can bypass all three defense
toolkits.

Keywords: TCP-based DDoS attacks · Attack Call Flow Graph ·
Symbolic execution

1 Introduction

With the evolution of the Internet, the security issues of the Internet have gar-
nered increasing attention. Among the various threats to networks, Distributed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Pöpper and L. Batina (Eds.): ACNS 2024, LNCS 14584, pp. 283–309, 2024.
https://doi.org/10.1007/978-3-031-54773-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54773-7_12&domain=pdf
https://doi.org/10.1007/978-3-031-54773-7_12

284 X. Ling et al.

Denial of Service (DDoS) attacks are regarded as one of the most serious and
commonly employed attack methods in practice [16,35,37,56,61]. For instance,
Cloudflare has reported a DDoS attack which is launched by a botnet comprising
approximately 11,000 IP addresses, peaking at an alarming 1.4 Tbps of attack
traffic [55].

Although there are various detection and defense techniques for DDoS attacks
[9,29,59], the main defense methods rely on traffic scrubbing [50], which requires
expensive dedicated hardware. The core idea of this approach is redirecting the
traffic of the target to the scrubbing centers of the Internet security service
providers, where malicious traffic is identified and filtered. To be more effec-
tive, traffic scrubbing has evolved from centralized single-point detection to dis-
tributed detection solutions [31]. However, these methods still face challenges,
specifically in terms of flexibility. On one hand, these detection methods heavily
depends on filtering strategies crafted from known attacks, making it vulner-
able to zero-day threats. [23]. On the other hand, middle-box-based detection
and defense systems rely on hardware devices [13,22] and lack adaptability to
various attack scenarios and network configurations. In addition, these methods
increase the cost for transmission and storage, and bring more attack surfaces
targeting middleware and cloud platforms [1,12].

Fortunately, with the emergence of Software-Defined Networking (SDN)
[15] and Network Function Virtualization (NFV) [19] technologies, research on
defense systems based on programmable networks has also pointed out new direc-
tions for DDoS detection and defense [54]. Bohatei et al. [14] is the first to design
a flexible and resilient DDoS detection and mitigation system based on SDN.
Although, subsequent studies based on this new network paradigm and network
devices (e.g., programmable switches and smart NICs) have improved the flexi-
bility and scalability of defense systems [28,52,57], the real-time response speed
and performance overhead need to be further improved.

Despite defense research efforts, the development of new DDoS attacks con-
tinues. Conversely, more and more diverse strategies have been shown in DDoS
attacks [30,34,43]. Firstly, emergent malware [39,45,46], such as Mirai [2], has
notably bolstered the potency of DDoS attacks by rapidly commandeering the
ever-increasing Internet of Things devices [33], leading to increased peak traf-
fic and diversified attack vectors. Secondly, many vulnerabilities are constantly
being exploited in network protocols, especially those based on the TCP pro-
tocol. Bock et al. [6] show that attackers exploiting vulnerabilities in the TCP
protocol for reflection amplification attacks is a potential new attack way, and the
amplification effect produced surpasses that of UDP-based attacks. TCP-based
DDoS attacks exploit the inherent characteristics of the TCP protocol. Attackers
employ a myriad of strategies and techniques to implement these attacks and
evolve them to evade detection. Thus, excavating attack patterns and identify-
ing vulnerabilities in existing protocols and systems is imperative for effective
detection.

Symbolic execution has been wilde used for is vulnerability exploitation and
patching [4,42]. Its prowess in navigating through intricate branch conditions can
achieve a deeper path execution. Further, Selective symbolic execution improves

DDoSMiner 285

it, as it can analyze multiple execution paths of a program and switch modes
between symbolic execution and concrete execution. Its flexibility in testing large
and complex systems, such as operating system kernels, gives it superior per-
formance in detecting bugs and vulnerabilities in binary-based projects [47].
Therefore, in this work, we adopt selective symbolic execution to discover more
variants of TCP-based DDoS Attacks and recognize the different categories of
attack methods at the system level, observing the depth of system calls and the
behavior of the TCP protocol during the attack.

In this work, we propose an automated framework termed DDoSMiner, which
can characterize DDoS attack patterns and explore variants of DDoS attack traf-
fic. Specifically, DDoSMiner would initially record TCP traffic and generate the
corresponding Attack Call Flow Graph (ACFG) for further recognition of the
DDoS attack patterns. The key nodes of the ACFG are extracted by differentiat-
ing between benign and attack traffic for subsequent symbolic execution analysis.
For the symbolic execution module, DDoSMiner explores potential attack traces
within the TCP protocol based on reachable path termination key states from the
ACFG, generating various reachable candidate attack packet sequences. Based
on our experiments, we identify a new attack traffic, which is a variant of SYN
Flood Attack related to timestamp obfuscation. The evaluation of the results on
three popular rule sets of Snort demonstrates the new attack could bypass all
defense rule sets, while traditional DDoS attacks cannot.

In summary, the contributions are as follows:

– We propose an automated framework DDoSMiner for characterizing the sys-
tem control flow behavior of DDoS attacks and exploring new DDoS attacks.

– We gather 6 TCP-based DDoS attacks and adopt DDoSMiner to generate
ACFG for analyzers. Furthermore, we discover a new DDoS attack trace and
collect corresponding attack traffic.

– Empirical results show that the attack generated by DDoSMiner successfully
evades three popular detection rule sets on NIDS.

2 Background and Related Work

In this section, we provide a brief background for TCP-based DDoS attack detec-
tion and defense. Subsequently, we summarize existing DDoS mining/exploit
schemes. Finally, we introduce symbolic execution technology, which is used to
construct DDoSMiner.

2.1 TCP-Based DDoS Attacks

DDoS attacks refer to attackers control devices on the Internet to generate mas-
sive malicious or useless packets to disrupt the target network services. Most
DDoS attacks are developed based on TCP [32], and typical categories involve
bandwidth attacks and resource exhaustion attacks [16]. This is because the char-
acteristics of the TCP protocol could be exploited by adversaries to transport-
layer paralyze target systems or services. For example, a series of TCP-based

286 X. Ling et al.

DDoS attacks lies in exploiting TCP control packets by deceiving the three-way
handshake between the source and target servers, exhausting the resources of
the target server, eventually resulting in unavailable services. To resist these
attacks, defenders typically adopt various strategies, such as IP address-based
access control [21,48,49,53], intrusion detection system (IDS) [5,44,51,60,62],
and distributed firewalls [3,24], to filter out forged connection requests and mit-
igate the impact of attacks.

2.2 DDoS Mining/Exploit Schemes

To mine more DDoS attack strategies, existing solutions mainly involve manual
schemes and fuzzing-based. The former mainly mines emerging attacks in a man-
ual manner and requires domain-specific expert experience. Rossow et al. [38]
propose 14 types of reflective DDoS attacks based on features including proto-
cols, payload sizes, and packet transmission frequency. Hong et al. [20] propose
two attacks against network topologies by finding that most mainstream SDN
controllers are vulnerable to network visibility poisoning. These works rely on
expert knowledge and cannot be automatically conducted/explored.

The latter mainly leverages fuzzing to discover new DDoS strategies. Among
them, AMPFUZZ [25] introduces a protocol-agnostic approach for UDP vulner-
ability, significantly enhancing the fuzzing performance of AMPFUZZ with UDP
awareness. However, this work only covers states while ignoring state transitions,
which has a significant impact on TCP implementation (compared with stateless
UDP). For instance, TCP-Fuzz [63] proposes a new strategy for generating effec-
tive test cases for TCP stacks by considering the dependencies between inputs.
TCP-Fuzz only tests TCP stacks in user space and does not check kernel-level
TCP stacks, thus it cannot obtain coverage of their branches and branch tran-
sitions. StateDiver [58] is based on fuzzing and uses the discrepancy between
the two inputs in the protocol stack as feedback to explore abnormal nodes in
TCP implementations (on DPI). While there is a lack of relevant feedback for
DDoS. Our work is based on the TCP stack at the Linux kernel level, allowing
more precise analysis of TCP’s state transitions and using symbolic execution
to explore the TCP stack at the source code level.

2.3 Exploration TCP Stack with Symbolic Execution

Symbolic execution is a white-box program analysis technique. It explores mul-
tiple possible execution paths by adopting symbolic input values instead of
concrete input values. This allows the exploration of various paths a program
might take under different inputs, achieving good performance on program anal-
ysis/vulnerability detection. However, it has some problems regarding the explo-
sion of path state space.

With the development of constraint satisfaction problems and the emergence
of more scalable dynamic methods that combine concrete and symbolic exe-
cution [8], concolic testing merges symbolic execution with concrete execution,

DDoSMiner 287

aiming to automatically discover vulnerabilities and errors in programs. Selec-
tive symbolic execution [10] further extends concolic execution, enabling pro-
gram analysis in real software stacks (user programs, libraries, kernels, drivers,
etc.) rather than using abstract models of these layers, and directly operating
on binary files.

As a leading work, SYMTCP [51] uses symbolic execution technology to
construct adversarial packets targeting TCP implementations. These packets
are designed to leverage the discrepancies between Deep Packet Inspection (DPI)
middleboxes and end hosts, to achieve eluding attacks. However, this requires
the manual review of the TCP stack’s source code and manual marking of drop
points (serve as termination points) in the Linux kernel.

Based on these studies, we intend to utilize symbolic execution to ana-
lyze TCP-based DDoS attack patterns. Different from SYMTCP, our pipeline
involves establishing and analyzing the ACFG by tracking TCP behavior on a
white-box target. By comparing normal traffic with various categories of attack
traffic, we identify drop nodes in the attack and generate related constraints for
symbolic execution.

3 Threat Model and Problem Definition

In this section, we describe the threat model in the context of DDoS attacks
and defense. We will provide a detailed definition of the ACFG in the following
sections, which will be used to outline path constraints.

3.1 Threat Model

Consider the DDoS Attack Defense Architecture as illustrated in Fig. 1. Attack-
ers send a large number of bogus TCP connection requests to the target system
through infected computers or devices, aiming to exhaust the resources of the
target server and thus prevent legitimate users from accessing the target service.
The IDS acts as a middlebox to monitor and report the traffic.

Actually, the TCP protocol on the server can be regarded as a discrete state
transition process, and the attack on the transmission protocol can be regarded
as a process of finite state machine state transitions. The execution of the TCP
protocol on the server can be modeled as a TCP finite state machine for program
analysis. The attackers aim to change the state of the TCP state machine by
sending probing attack packets and altering the response of the server to these
probing packets.

We adopt the TCP stack of the Linux kernel for system-level program anal-
ysis. Furthermore, to expand attack scenarios, we assume that attackers can
spoof addresses, which means they can disguise the source IP address of their
attack traffic. This assumption increases the diversity and applicability of the
attacks. Through comparative experiments between attack traffic and benign
traffic, we ensure that the anomalies observed on the server side after an attack

288 X. Ling et al.

Attack Packets

Attacker
Intrusion Detection System (IDS)

Server

Handler

Attack Packets

Attacker
Intrusion Detection System (IDS)

Server

Handler

Fig. 1. Illustration of DDoS attack pipeline and IDS.

are due to resource exhaustion attacks caused by the TCP protocol, not band-
width attacks overwhelmed by high traffic volume, because the server system
will not be destroyed by benign packets under the equivalent traffic loads.

3.2 Problem Definition

In this section, we provide a detailed definition of this work and offer a charac-
terization of the ACFG and its elements.

Definition 1: TCP State Machine. Based on the TCP protocol specifica-
tions, the Mealy TCP state machine [27,51] can be described as follows,

M = (S, I,O,Σ,Z) , (1)

S: The finite non-empty set of states. For instance, the typical set of TCP
states includes LISTEN, SYN RCVD, ESTABLISHED states. s0 ∈ S represents
the initial state.

I: The input symbol set, representing input events of the state machine, i.e.,
TCP packets.

O: The output symbol set, represents the output actions of the state machine.
For example, sending SYN packets, sending ACK packets, closing connections,
etc.

Σ: The state transition function, which defines the transition rules between
states, denoted as S × I → S. It specifies the next state the state machine will
move to, given a certain state and input event.

Z: Output function, which defines the relationship between the output sym-
bol, state, and input event, denoted as S × I → O. It specifies which output
action the state machine should perform, given a state and input event.

DDoSMiner 289

Fig. 2. Syscall interaction analysis based on categories and connectivity.

Definition 2: Attack Call Flow Graph. The ACFG is a directed weighted
graph G = (V,E), where each node in the set of vertices represents a function
of the TCP stack. The call relationships between functions are represented by
directed edges. We extract different classes of ACFGs based on the characteristics
of benign traffic and attack traffic.

Definition 3: Malicious Nodes. Malicious nodes represent the function nodes
involved in the attack. These nodes are typically the functions abused by attack-
ers in the target system to initiate attacks or bypass security mechanisms. The
set of malicious nodes is denoted as VM .

Definition 4: Critical Nodes. Critical nodes represent important functional
nodes in the TCP stack, and their stability and correctness are crucial for the
operation of the entire system. Attackers may attempt to destroy the target
system through these nodes. After visualizing the system calls of benign and
attack traffic, we discover both of them rely on a specific node in a chained
call process. These malicious nodes resemble nodes in the normal traffic. While
there may be recursive calls within the path, such patterns often accompany the
presence of a critical node. Therefore, we further extract the critical nodes from
the ACFG.

As shown in Fig. 2, after clustering network nodes based on connectivity
and categories, we find that some nodes have an impact on the network’s cluster
structure. The key to defining critical nodes is to find an optimal subset of nodes
in the graph, denoted as VC ⊆ VM , such that the removal of these nodes has
the maximum impact on the network’s connectivity [26]. Let the set of critical
nodes be denoted as VC = {v1, v2, ..., vl},

λ1 = λN−1, (2)

λ2 = λN−l, (3)

290 X. Ling et al.

λ1

[
−c0P(0)N−l +

λτ

2

k∑
r=1

crP
2
(r)N−l

]
≥ λ2

[
−c0P(0)N +

λτ

2

k∑
r=1

crP
2
(r)N

]
, (4)

where λN−1 represents the eigenvalue of the original matrix, λN−l represents
the eigenvalue of the matrix after removing the set of critical nodes, and λτ

represents the maximum eigenvalue of the internal coupling matrix between
the state variables of each node. The values cr > 0, r = 1, ..., k represent the
connectivity strengths of the r-th sub-network. The matrix PN(r) =

[
p(r)ij

]
N×N

represents the external coupling matrix of the r-th sub-network, used to describe
the network topology. The definition of the matrix PN = [pij]N×N is as follows:
if there is an edge connecting node i and node j, then p(r)ij = p(r)ji = −1,
otherwise, it is 0.

The set of critical nodes should also satisfy that the nodes in VC have the
maximum total weighted sum, where f(vi) represents the attribute value of node
vi,

max
∑

f (vi) , vi ∈ VC . (5)

According to Definition 2 and Definition 4, we generate the critical nodes as
described in Algorithm 1.

Definition 5: Pivotal Nodes. Pivotal nodes represent the distinctive nodes
that cause a change of the TCP state. The set of pivotal nodes is denoted as VP .

Definition 6: Drop Nodes. We focus primarily on nodes that not only have
malicious behavior but also play a crucial role in the network. These types of
nodes are not just potentially malicious in intent but also have a significant
impact due to their critical position in the network structure. In addition, we
consider those nodes that represent state transitions in TCP connections because
they play an important role in determining the TCP state machine.

Thus, drop nodes are defined as the intersection of malicious nodes and crit-
ical nodes union with pivotal nodes, represented as,

VD = VM ∩ VC ∪ VP . (6)

Definition 7: Candidate Attack Sequence. When exploring the TCP state
machine M , if the TCP packet Packeti ∈ I either reaches our defined termi-
nation point or neither causes a change in the TCP state machine’s state nor
generates any output, then that packet belongs to the candidate attack sequence,
as follows,

Σ(s, Packeti) = s ∧ Z(s, Packeti) = ε. (7)

DDoSMiner 291

Algorithm 1: Critical Nodes Algorithm
Input: Directed graph G, node attribute value f , eigenvalues of the original

matrix λN−1, maximum eigenvalue of inner coupling matrix λτ , external
coupling matrix of rth subnetwork PN(r).

Output: criticalNodes
1 // Step 1: Initialize criticalNodes and maxImpact

2 criticalNodes ← ∅, maxImpact ← −∞;
3 // Step 2: Traverse each node in the graph G

4 for node in G.nodes do
5 // Step 3: Remove the current node, create graph G′

6 G′ ← G.removeNode(node);
7 // Step 4: Initialize the impact of cluster C

8 C.impact.init();
9 // Step 5: Traverse each cluster in graph G

10 for C in G.clusters do
11 // Step 6: Traverse each node in the cluster C

12 for node in C.nodes do
13 // Step 7: The dependency of current and next node

14 C.conn ← any(G.hasEdge(node, node.next) ∧ node �= node.next);
15 C′.conn ← ¬all(G′.hasEdge(node, node.next) ∧ node �= node.next);
16 if C.conn ∧ C′.conn then
17 // Step 8: Calculate the sum of attribute value and

update the impact of cluster C

18
∑

fC ← ∑
(fnode for node in C);

19 C.impact ← C.impact + P 2
N(r) · (λN−1 − λτ) · ∑

fC;

20 end

21 end

22 end
23 if C.impact > G.initImpact and C.impact > maxImpact then
24 // Step 9: Update maxImpact, add node to criticalNode

25 maxImpact ← C.impact;
26 criticalNodes.add(node);

27 end

28 end

4 Workflow of DDoSMiner

The overview of the DDoSMiner workflow is illustrated in Fig. 3, which consists
of three modules. In Module 1, DDoSMiner traces the kernel for both benign
and attack packets, and modeling attacks to generate a visual ACFG. In this
stage, we aim to collect all attack paths and critical nodes under different TCP
states when attacks occur. Module 2 refers to the symbolic execution phase. The
inputs consist of a set of TCP seed packets that drive the selective symbolic
execution engine to explore the TCP stack based on the drop nodes. Module 3 is
the online verification phase, launching the generated candidate attack sequence
to bypass the existing IDS.

292 X. Ling et al.

 Module1. ACFG (Attack Call Flow Graph) Generation

 Module2. Symbolic Execution Module3. Verification

TCP-based DDoS
Attack Packets

Drop Nodes

Constraints
Solving

Candidate Attack
Sequence TCP Seed

PacketsTCP State
Information

Attack Patterns

QEMU KVM

TCP Stack

Attack
Verification

Benign TCP
Packets

Function Trace

Linux Kernel
Attack Call
Flow Graph

Selective Symbolic
Execution Engine

Manual Analysis

 Module1. ACFG (Attack Call Flow Graph) Generation

 Module2. Symbolic Execution Module3. Verification

TCP-based DDoS
Attack Packets

Drop Nodes

Constraints
Solving

Candidate Attack
Sequence TCP Seed

PacketsTCP State
Information

Attack Patterns

QEMU KVM

TCP Stack

Attack
Verification

Benign TCP
Packets

Function Trace

Linux Kernel
Attack Call
Flow Graph

Selective Symbolic
Execution Engine

Manual Analysis

Fig. 3. Workflow of DDoSMiner.

4.1 Generation of Attack Call Flow Graph

The complete TCP state transition involves 11 states [18], and we simplify the
states of the TCP finite state machine as shown in Fig. 4. When a TCP con-
nection is established, both the client and server are in the CLOSED state. The
server creates a socket and begins listening for incoming remote requests, at
which point it enters the LISTEN state. The client initiates a connection by
sending a SYN segment (SYN=1) to the server, requesting to establish a con-
nection. Upon receiving the segment, the server responds by sending an ACK
and SYN segment (SYN=1, ACK=1) to the client. Meanwhile, the server’s state
transitions to SYN RCVD. After receiving the segment, the client sends an ACK
to the server. Upon receiving the ACK, the server’s state transitions to ESTAB-
LISHED. Then the three-way handshake is completed, and the TCP connection
is established.

We establish an experimental environment running on a standard Linux oper-
ating system, designed to collect kernel information and recreate TCP-based
DDoS attacks from datasets [40,41] for kernel tracing and analysis.

LISTEN SYN_RCVD ESTABLISHED NORMCON

Fig. 4. Simplified TCP states.

DDoSMiner 293

Specifically, six categories of attacks are considered, including TCP Connect
Flood, TCP SYN Flood, TCP ACK Flood, TCP RST Flood, ACK-PSH Flood,
and SYN-RST-ACK Flood attacks. Each attack class abuses TCP connections
consumes resources of the target server, or obfuscates network traffic in its unique
way. Learning from these categories of attacks allows us to gain a more compre-
hensive understanding of the DDoS threats based on the TCP protocol and how
to effectively identify and respond to these threats.

According to the definitions provided in Sect. 3.2, we generate ACFGs asso-
ciated with different attack categories and present them through visualization.
In Fig. 5, we use different colors to represent different classes of nodes. Blue
nodes represent malicious nodes, orange nodes represent critical nodes, and red
nodes represent pivotal nodes. The radius of each node reflects the size of its
attribute value, with larger nodes indicating higher importance. Directed edges
in the graph represent the call relationships between functions, and the edge
weights indicate the level of dependence between different functions under the
same traffic conditions.

 Malicious Nodes Critical Nodes Pivotal Nodes Other Nodes

Fig. 5. Diagram depicting paths for benign and attack TCP packets.

4.2 Selective Symbolic Execution

S2E utilizes the symbolic execution engine KLEE [7] and conducts kernel testing
through the QEMU simulation system. It also offers an API interface [11] that
enables users to customize the scope of symbolic execution, facilitating a seamless
transition between symbolic execution and concrete execution modes. Firstly, the
symbolic execution engine initiates the running Linux kernel using a TCP socket
in the LISTEN state. Subsequently, it provides multiple symbolized TCP packets
to the kernel to comprehensively explore the server’s TCP stack. The generation
of symbolized data packets is divided into two parts:

(i) Generating TCP header packets with various combinations. During the sub-
sequent symbolic execution process, we focus on how changes in TCP header
fields such as sequence number, acknowledgment number, data offset, flags,

294 X. Ling et al.

Fig. 6. Symbolized TCP header and options [51].

window size, and urgent pointer affect path exploration. We automatically
generate various TCP header segments using script files, combine them with
other components, and create TCP seed packets.

(ii) Symbolizing data packets. The input for symbolic execution is not concrete
data, it requires symbolizing data values. A TCP header consists of a min-
imum of 20 bytes of fixed data (as shown in Fig. 6), storing the necessary
information for the packet transmission. The 20-byte TCP header does not
include options or data. Symbolizing TCP packets is one of the essential
tasks in symbolic execution analysis. It allows analysis tools to use symbolic
variables instead of concrete data values. This helps simulate various TCP
packet transmission paths, identifying potential vulnerabilities or issues.

Consider DDoS attackers typically deliberately mask their source IP
addresses and send a large number of false or invalid requests to the target
port. Therefore, we do not symbolize the source port and destination port
to avoid impacting the performance of symbolic execution. Symbolized fields
include sequence number, acknowledgment number, data offset, flags, window
size, urgent pointer, and TCP options. Changes in these fields can involve alter-
ations in the TCP state. After constructing the TCP seed packets sent to the
Linux host in S2E, we call the symbolization module for processing.

All execution paths for symbolic execution form a tree-like structure known
as the symbolic execution tree. We convert the directed weighted graph G cor-
responding to the ACFG into a directed spanning tree. We utilize a recursive
depth-first search (DFS) to explore the graph G and construct a directed span-
ning tree T , ensuring that no cycles are encountered during the analysis process.
This way, we can define symbolic execution path constraints through the gener-
ated tree T .

Through symbolic execution, we are able to identify a candidate attack
sequence that satisfies the branch termination conditions, and record the path
selections and symbolic constraints from the path exploration process in an out-
put document. This enables us to obtain attack patterns on the white-box sys-
tem, allowing for a detailed analysis of the attacks and the discovery of new
attack sequences.

DDoSMiner 295

5 Evaluation

In this section, we first introduce the environment and configuration of our
experiment. We list the packet variants found by symbolic execution and check
whether IDS can prevent the corresponding attack behavior. After that, we in-
depth analyze the details of packet variants that can successfully bypass the
defense of IDS, while others can not.

5.1 Experiment Configuration

Testbed. We develop the prototype of DDoSMiner based on S2E 2.0 and Linux
kernel with S2E extension. The host operating system is Ubuntu 22.04, 64-bit,
with a 12-core CPU, specifically the 12-th Gen Intel(R) Core(TM) i5-12400,
and the GUEST operating system is Debian 11.3, 64-bit, with a 12-core CPU,
specifically the 12-th Gen Intel(R) Core(TM) i5-12400. Both systems are all
running based on Linux kernel v4.9.3. We run S2E in parallel mode with 48
cores, which is the maximum number of processes supported at present.

We use S2E to test the TCP stack implementation in the Linux kernel and
switch between the concrete mode and symbolic execution mode. When the pro-
gram reaches the tcp v4 rcv() code segment, we switch to symbolic execution
mode, while the rest of the code segments on the kernel remain in concrete exe-
cution mode. Test cases and symbolic constraints are generated when we reach
the code segment where our marked drop nodes are located.

IDS and Rule Sets. For evaluation, we use Snort 3 [36] as the deployed IDS
by the victim. Given Snort is the foremost open-source NIDS in the world, and
it employs a set of defined rules to identify harmful network activities and alerts.
In high-speed bandwidth environments, different rule sets vary in detection per-
formance [17]. We evaluate the performance using Snort Registered (SR), Snort
Community (SC), and Emerging Threats (ET) rule sets.

5.2 Attack Call Flow Graph Analysis

To better understand the attack patterns and find the key point, we construct
ACFG to assist in identifying and analyzing existing DDoS attacks, especially
for the difference of distinctive paths between attack and benign traffic. We
conduct kernel tracing on benign TCP traffic, which amounts to approximately
30GB in total. This benign flow serves as a reference baseline and assists us in
gaining a deeper understanding of the impact of DDoS attacks on the kernel and
in identifying characteristics of abnormal behavior.

Take TCP Connect Flood attack and the TCP SYN Flood attack as exam-
ples, as shown in Fig. 12 in Appendix. TCP Connect Flood attack potentially
triggers several TCP connection management functions within the kernel, such
as tcp rcv established() and tcp time wait(), among others. This class of
attack results in a large influx of connection requests, causing the server to

296 X. Ling et al.

Table 1. Drop nodes counts in various states

TCP-based DDoS Attacks State Count TCP-based DDoS

Attacks

State Count

TCP Connect Flood LISTEN 1 TCP SYN Flood LISTEN 7

SYN RCVD 2 SYN RCVD 12

ESTABLISHED 5 ESTABLISHED 44

ALL STATES - ALL STATES 3

TCP ACK Flood LISTEN 6 TCP RST Flood LISTEN 2

SYN RCVD 11 SYN RCVD 1

ESTABLISHED 18 ESTABLISHED 10

ALL STATES 3 ALL STATES 1

ACK-PSH Flood LISTEN 6 SYN-RST-ACK Flood LISTEN 2

SYN RCVD 11 SYN RCVD 4

ESTABLISHED 21 ESTABLISHED 2

ALL STATES 2 ALL STATES -

continuously attempt to allocate resources to handle these requests, ultimately
leading to resource exhaustion. TCP SYN Flood attacks trigger a large number
of invocations of the tcp syn ack timeout() function within the TCP stack.
This function defines the timeout period during which the server waits for the
client to respond with an ACK after sending a SYN-ACK response. In TCP
SYN Flood attack scenario, the TCP state machine remains in the SYN RCVD
state and cannot progress to the next state.

We consider resolve oracle in the TCP LISTEN, SYN RCVD, and ESTAB-
LISHED states, given these states cover the complete window of the server side in
the TCP three-way handshake. Such a way of focusing on core state transitions
simplifies the state machine, making symbolic execution more efficient. Thus, in
other TCP states, such as CLOSE WAIT, the server will not accept any further
packets. For different attacks, we mark different drop nodes in the source code.
S2E symbolically executes Linux binary files, so these points will be mapped to
the binary level. The number of drop nodes corresponding to different attacks is
shown in Table 1. Due to space limitations, we have placed the original address
table of drop nodes in Table 2 of the Appendix.

5.3 Symbol Execution Experiment Setup

Symbolic execution may get stuck at the beginning of execution and hard to
reach deep paths, which is caused by path selection heuristic methods. Therefore,
the key of the symbolic execution phase lies in the construction of TCP seed
packets and the definition of pruning strategies. TCP seed packets guide the
program along the path to the parts of the kernel and create side branches.
Once construction process of the main path is completed, S2E explores side
branches in depth. The promising seed packets help us penetrate deeper into the
TCP stack quickly.

DDoSMiner 297

Fig. 7. Time costs and drop nodes coverage in symbolic execution.

In symbolic execution, we discard uninteresting paths, including: (i) Redun-
dant paths that re-explore the same parts of the kernel code, i.e., if a program
path is identified to a previously explored path and reaches the same address with
the same symbolic constraints, it will continue executing the same next branch.
As a result, it can be discarded. (ii) Error detection path branches caused by
incorrect concrete values generated by the solver. (iii) Path branches caused by
Linux kernel check failures. (iv) Path branches leading to drop nodes. These
strategies help us reduce the symbolic state space.

Although we generate specific TCP seed packets to reach drop nodes’
addresses and employ optimization strategies to narrow down the search space
for solutions, the complexity of the TCP stack makes it challenging for symbolic
execution to provide comprehensive coverage. We examine the path coverage of
the stack and track the accessed drop nodes, which can ensure critical nodes
associated with potential attack paths have been checked.

In experiments, we send three types of symbolic data packets: 20-byte pack-
ets, 40-byte packets, and 60-byte packets, each of which includes a TCP header
and payload. We observe that the composition of seed packet fields significantly
affects the time cost of symbolic execution, especially when handling 40-byte
and 60-byte packets, as shown in Fig. 7. We label six categories of attacks using
Roman numerals: TCP Connect Flood (I), TCP SYN Flood (II), TCP ACK
Flood (III), TCP RST Flood (IV), ACK-PSH Flood (V), and SYN-RST-ACK
Flood (VI).

Large seed packets contain more variables and data to be symbolized, result-
ing in a significant increase in the number of paths that the symbolic execution
engine needs to explore. This is because every possible branch of each conditional
statement needs to be considered. It needs to backtrack to a previous branching
point and reselect a path when the constraint is unsatisfied. These packets not
only introduce more code blocks, increasing the time cost of symbolic execution
but also imply exploring more paths to achieve higher code coverage.

After approximately 20 h of symbolic execution exploration, we utilize six
instances to explore over 100,000 execution paths. During this process, more than
4,000 state transitions were triggered. Due to the server-side TCP state machine
experiencing numerous repetitive cycles of state sequence (such as LISTEN →
SYN RCVD → SYN RCVD), these transitions include repeated states, covering
approximately 2,000 lines of code. Subsequently, we conduct further analysis of

298 X. Ling et al.

Fig. 8. Analysis of Testcase under various attacks.

the test cases associated with these newly discovered attack paths and perform
kernel tracing. In subsequent experiments, we assess these new potential threats
to better understand their potential risks and the impact of attacks.

5.4 Symbolic Execution Results

We solve the test cases for candidate attack sequences to generate specific values
for TCP header fields and perform field padding and validation for the packets.
Although selective symbolic execution explores paths close to the seed packets,
the randomness of paths due to the complexity of the TCP protocol stack may
lead to differences in path search results. Therefore, with the same configuration,
we conduct five sets of experiments (labeled A to E) for six categories of attacks
and record the following metrics:

Testcase Count. This metric represents the number of generated test cases.
It demonstrates the exploration of potential attack paths by the symbolic exe-
cution engine and the quantity of generated attack samples.

Attack Success Rate. This metric reflects the ratio of actual successful
attack attempts. It helps evaluate the effectiveness of the generated test cases in
simulating real attacks.

CPU Utilization. By monitoring CPU utilization, we understand the sys-
tem resource load during the attack.

Connection Queueing Rate. This metric shows the situation where TCP
connection requests are forced to queue for processing due to the attack. This
metric helps evaluate the performance of the system’s responsiveness to service
requests.

For the candidate attack sequence of each class attack, we conduct five inde-
pendent simulations to observe the impact of different factors under the above
metrics, as shown in Fig. 8 and 9. Actual data may varies due to network devices,
configurations, and defense strategies in place traffic patterns can also influence
the results. By monitoring and analyzing these metrics, we can more accurately
assess the actual performance and effectiveness of the test cases generated by
symbolic execution in the context of DDoS attack and defense.

DDoSMiner 299

Fig. 9. Comparative metrics and impact of various attacks.

For the Testcase Count, the average number of Testcase Count is around
9300 for each type of attack, indicating that the symbolic execution engine
explored attack paths to a similar extent across various types of attacks. The
curves in Fig. 8 represent the average of five independent experiments for each
type of attack, and the bars represent the standard deviation for each type of
attack. From the averages, ACK-PSH Flood attack (V) and SYN-RST-ACK
Flood attack (VI) had fewer test cases, indicating that the symbolic execution
engine encountered fewer variants when exploring paths for these two types of
attacks. The standard deviation indicates that the TCP RST Flood attack (IV)
has the minimum fluctuation in test case count across different experiments.

Under different attacks, CPU utilization, connection queueing rate, and
attack success rate show different performances as shown in Fig. 9. TCP Connect
Flood and SYN-RST-ACK Flood attacks generally introduced more computa-
tion and connection requests, leading to higher CPU utilization, which was above
96% in experiments, even reaching 100%. Although TCP SYN Flood and TCP
RST Flood attacks involve a large number of connection requests, their attack
processes are simpler, thus requiring less CPU resources. TCP ACK Flood and
ACK-PSH Flood attacks show moderate CPU utilization.

For the Connection Queueing Rate, the six attacks do not show significant
differences. Effective test cases in most evaluations cause system capacity insuf-
ficiency and queuing of connection requests. This indicates that categories of
attacks effectively exhaust server resources.

For the Attack Success Rate, TCP ACK Flood and TCP RST Flood attacks
show lower success rates because these two types of attacks require matching
valid connection states to deceive the TCP protocol stack, otherwise they would
not affect the establishment of new connections or the continuation of existing
ones. In contrast, attacks like TCP SYN Flood or TCP Connect Flood directly
target the initialization process of connections, quickly filling the server’s half-
open connection queue and preventing the establishment of new legitimate con-
nections. This directly affects server availability, hence they have higher attack
success rates. ACK-PSH Flood and SYN-RST-ACK Flood attacks increase
server processing load, leading to connection interruptions or service delays.

300 X. Ling et al.

Fig. 10. Analysis of Benign vs. Known attack vs. New attack TCP traffic.

5.5 Evasion Evaluation Against IDS

We utilize three rule sets compatible with the Snort: SR, SC, and ET, and eval-
uate about 10,000 candidate attack sequences generated by symbolic execution.

We analyze the network traffic without IDS and then apply the SR, SC,
and ET rule sets for attack detection. To better understand this detection and
filtering process, we visualize this process, as shown in Fig. 10. The Fig. 10(a)
shows the states of benign traffic, known attack traffic, and new attack traffic
when no IDS checks are enabled. The other three figures in Fig. 10 are the traffic
conditions using the SR, SC, and ET rule sets. It shows that the ET rule set has
better detection performance than the other two.

Under baseline conditions without IDS inspection enabled, we first verify
known attack traffic, which mainly consists of traffic in public datasets. The
results show that when rule inspection is enabled, the defense system can effec-
tively mark and filter known attack traffic. However, for new attack traffic
generated by candidate attack sequences through symbolic execution, although
Snort successfully detects and blocks some attacks, a significant amount of traffic
bypasses Snort’s detection and successfully reaches its intended victim.

We evaluate CPU Utilization and Connection Queueing Rate as mentioned
above, confirming they indeed caused resource occupancy and TCP connection
queue congestion. Figure 11 shows the state of system resources is saturated dur-
ing new attacks and queuing of TCP connection requests caused by the limitation
of CPU capacity.

In the first 15 s, CPU occupancy is low, maintaining around 20%, and the
message queuing rate is nearly zero, indicating the system is operating nor-
mally without significant load or congestion. However, after 15 s, CPU occupancy

DDoSMiner 301

Fig. 11. Changes in CPU Utilization and Connection Queueing Rate over time.

began to rise sharply, quickly approaching 100%, indicating the attack started
to cause significant processing pressure.

Meanwhile, the queuing rate of TCP connections began to rise slowly.
After the CPU utilization reaches its peak, the message queuing rate gradually
increases and reaches 100% at around 25 s. This means all new TCP connection
requests are queuing up for processing, i.e., unable to handle any TCP connec-
tion immediately. In this state, the system could not handle more load, and new
requests could only wait, leading to service timeouts.

We found despite setting defense levels for the known six categories of attacks
in the IDS, attackers can evade detection by adopting various attack variants,
aiming to increase attack success or reduce detection risk. These variants include
parameter randomization, attack mixing, malware use, IP address spoofing,
attack segmentation, and evasion of known rules.

Further, we discover that successful evasion strategies are related to TCP
timestamp option verification. Packets with time stamp echo reply (TSecr) not
matching timestamp value (TSval) are usually detected and reported by rules,
but successful IDS evasion cases with timestamped packet sequences include:

Insert Invalid Values. Randomizing Flag fields and TSval not conforming
to the normal time progression pattern (e.g., echoing a value in the TSecr field
that was never sent before in TSval), making packets appear as benign, delayed
arrivals.

Imitate Normal Communication. Attackers observe normal TCP traf-
fic timestamp patterns and imitate these patterns, using specific modes (e.g.,
adding extra microseconds every few packets) to alter the normal progression of
timestamps.

Timestamp Obfuscation. Some sequence timestamps are abnormal, with
their parsing observed to be incorrect on target servers. Compared to known
attack traffic, IDS does not report these packets, but their TIME WAIT state
often last twice as long as the Maximum Segment Lifetime (MSL). Also, part of
the timestamp confusion packets lead to abnormal transitions in the TCP state
machine.

302 X. Ling et al.

These attacks affect the TCP Retransmission Queue, with abnormal TSval
causing the TCP stack to misjudge network conditions, affecting the calcula-
tion of retransmission timeouts. Multiple timers and timeout mechanisms in the
TCP stack, like Keepalive timers and TIME WAIT state processing, are also
disrupted, affecting the TCP states.

Attackers could exploit flaws in TCP timestamp verification to disguise
attack traffic as normal, avoiding detection by IDS. This camouflage method
tampers with timestamps or inserts erroneous ones in attack packets, further
increasing detection complexity and reducing accuracy. Although attacks using
TCP timestamp options are not common, they are significantly effective. Devel-
oping IDS capable of deep analysis will help increase detection accuracy and
reduce false positives.

6 Conclusion

In this work, we introduce DDoSMiner, an automated framework which utilizes
the ACFG to extract critical attack points. In addition, we explore the system-
level performance of an attack and provide visualization results. DDoSMiner
integrates symbolic execution to systematically explore DDoS traffic variants
with the guidance of identified key states in the TCP state machine. Our exper-
iments generate a total of 9,741 candidate attack traffic variants, which are
evaluated on the popular NIDS Snort with three main defense rule set toolkits.
The result identifies one new attack traffic which is capable of bypassing all three
defense measures, demonstrating the effectiveness of DDoSMiner in uncovering
TCP-based DDoS attacks. Our work not only reveals potential security threats
in the TCP protocol but also provides a new perspective on attack methodology,
assisting researchers in better understanding and preventing network attacks.

7 Limitations and Future Work

Due to the complexity of the Linux kernel, exploration based on white-box strate-
gies still has the problem of inefficiency. Distributed strategies can be considered
to improve the efficiency of system operation. In addition, we chose a specific
version of the Linux kernel v4.9.3 to evaluate our system. TCP state machines for
other kernel versions and categories of attacks can be built through patch instal-
lation and other methods. Moreover, although we choose three widely covered
and mature IDS rule sets for verification against new threats, specific subsequent
defensive strategies and measures still need further research and exploration. In
the future, we plan to improve DDoSMiner by increasing the path coverage of
detection and applying DDoSMiner to other TCP stacks. Furthermore, DDoS-
Miner could be extended to explore more protocols. For different protocols, dif-
ferent drop nodes can be designed for expansion.

Acknowledgements. This work was supported in part by National Natural Sci-
ence Foundation of China (62227805, 62072398 and 62172405), by SUTD-ZJU IDEA

DDoSMiner 303

Grant for visiting professors (SUTD-ZJUVP201901), by the Natural Science Founda-
tion of Jiangsu Province (BK20220075), by the Fok Ying-Tung Education Foundation
for Young Teachers in the Higher Education Institutions of China (20193218210004),
by State Key Laboratory of Mathematical Engineering and Advanced Comput-
ing, and by Key Laboratory of Cyberspace Situation Awareness of Henan Province
(HNTS2022001).

A Visualization and Analysis of System Calls

The ACFG extracted from the TCP Connect Flood and TCP SYN Flood attacks
are shown in Fig. 12. The nodes and edges of ACFG are highlighted in different
colors to represent the corresponding types of packets (benign or attack). In
the figure, green-colored elements represent syscalls triggered by benign packets,
orange-colored elements represent syscalls triggered by attack packets, and blue
elements represent syscalls triggered by both types of packets. The red colored
nodes are identified as Pivotal Nodes. According to the definition in Sect. 3.2,
the following nodes represent the change of TCP state:

(i) tcp v4 syn recv sock: This is a critical function for handling client SYN
packets. This function checks the current TCP state (for example, whether
it is in LISTEN state) to determine if the connection can be established.

(ii) tcp check req: This function checks whether the SYN packet is valid and
whether there are resources available to handle this new connection request.
If the SYN packet is invalid, a RST packet will be sent to refuse the con-
nection.

(iii) tcp v4 do rcv: When the client sends an ACK packet in response to the
server’s SYN and ACK, this function processes the ACK packet, thereby
advancing the connection state transition process.

(iv) tcp rcv state process: This function is crucial in the TCP state machine.
Within this function, if the current connection state is SYN RCVD and
an appropriate ACK segment is received, the state transitions to ESTAB-
LISHED. Other state transitions in the TCP connection and the processing
of related packets also call this function.

(v) tcp rcv established: This function handles inputs in the ESTABLISHED
state.

(vi) tcp close: This function is used to close a TCP connection. It releases the
resources occupied by the connection and changes the connection state.

By comparing the orange nodes in the syscall of TCP Connect Flood and
TCP SYN Flood attacks, we can see that the two attacks have different charac-
teristics (detailed analysis in Sect. 5.2).

B The Kernel Address Corresponding to the Full Drop
Nodes for Six Categories of Attacks

We extract the potential drop nodes from the ACFG and then indexed the
corresponding addresses in the kernel. These addresses serve as path termination

304 X. Ling et al.

Fig. 12. Visualization of system calls for TCP Connect Flood Attack and TCP SYN
Flood Attack.

DDoSMiner 305

Table 2. Kernel addresses associated with drop nodes for different attacks

TCP-based
DDoS Attacks

Address

TCP Connect Flood ffffffff819dc550 ffffffff819d93d0 ffffffff819e04d0 ffffffff819e9bf0

ffffffff819dc3a0 ffffffff819f1910 ffffffff819ef4d0

TCP SYN Flood ffffffff819f63b0 ffffffff819e5410 ffffffff819eaee0 ffffffff819eda80

ffffffff819d9ce0 ffffffff819de910 ffffffff819ead60 ffffffff819de6e0

ffffffff819d9e30 ffffffff819e63d0 ffffffff819de950 ffffffff819d2250

ffffffff819d5010 ffffffff819e4dd0 ffffffff819f5720 ffffffff819eb9d0

ffffffff819f6330 ffffffff819d1830 ffffffff819f5790 ffffffff819d3290

ffffffff819dc3a0 ffffffff819d9ef0 ffffffff819e91a0 ffffffff819e2a70

ffffffff819da3e0 ffffffff819f5a90 ffffffff819eafe0 ffffffff819ebbf0

ffffffff819de6a0 ffffffff819d38d0 ffffffff819e4600 ffffffff819ea720

ffffffff819d9e60 ffffffff819d19d0 ffffffff819e4550 ffffffff819dee80

ffffffff819d9f50 ffffffff819eca70 ffffffff819d1c00 ffffffff819ea5d0

ffffffff819dbee0 ffffffff819ed670 ffffffff819d7890 ffffffff819d1790

ffffffff819d3490 ffffffff81a87d40 ffffffff819d6af0 ffffffff819f5440

ffffffff819f25c0

TCP ACK Flood ffffffff819e5410 ffffffff819de6a0 ffffffff819d19d0 ffffffff819eca70

ffffffff819de910 ffffffff819d1830 ffffffff819f5790 ffffffff819ef4d0

ffffffff819e63d0 ffffffff819d38d0 ffffffff819d1c00 ffffffff819ed670

ffffffff819f5440 ffffffff819d3490 ffffffff819eda80 ffffffff819d3290

ffffffff819d7890 ffffffff819d6af0

TCP RST Flood ffffffff819d9470 ffffffff819d9080 ffffffff819efb70 ffffffff819f06c0

ffffffff819f6a30 ffffffff819e2b60 ffffffff819f0560 ffffffff819f6d10

ffffffff819ebfe0 ffffffff819ee750

ACK-PSH Flood ffffffff819e5410 ffffffff819e2a70 ffffffff819d38d0 ffffffff819eb9d0

ffffffff819de910 ffffffff819dc3a0 ffffffff819d19d0 ffffffff819ef4d0

ffffffff819e63d0 ffffffff819de6a0 ffffffff819f5790 ffffffff819eda80

ffffffff819f5440 ffffffff819d1830 ffffffff819e4600 ffffffff819ebbf0

ffffffff819d3290 ffffffff819e0460 ffffffff819eca70 ffffffff819d6af0

ffffffff819ea5d0 ffffffff819d3490 ffffffff819ed670 ffffffff819d1c00

ffffffff819e4550 ffffffff819d7890 ffffffff81a87d40

SYN-RST-ACK Flood ffffffff819e0460 ffffffff819ea5d0 ffffffff819ef4d0 ffffffff81a87d40

ffffffff819e4600 ffffffff819e4550

points for symbolic execution. The detailed attack types and the corresponding
address we extracted for the experiment are listed in Table 2.

306 X. Ling et al.

References

1. Agrawal, N., Tapaswi, S.: Defense mechanisms against ddos attacks in a cloud
computing environment: state-of-the-art and research challenges. IEEE Commun.
Surv. Tutorials 21(4), 3769–3795 (2019)

2. Antonakakis, M., April, T., et al.: Understanding the mirai botnet. In: 26th
USENIX Security Symposium (USENIX Security 17), pp. 1093–1110 (2017)

3. Baig, Z.A., et al.: Controlled access to cloud resources for mitigating economic
denial of sustainability (edos) attacks. Comput. Netw. 97, 31–47 (2016)

4. Baldoni, R., Coppa, E., et al.: A survey of symbolic execution techniques. ACM
Comput. Surv. (CSUR) 51(3), 1–39 (2018)

5. Bhale, P., Chowdhury, D.R., Biswas, S., Nandi, S.: Optimist: Lightweight and
transparent ids with optimum placement strategy to mitigate mixed-rate ddos
attacks in iot networks. IEEE Internet of Things Journal (2023)

6. Bock, K., et al.: Weaponizing middleboxes for {TCP} reflected amplification. In:
30th USENIX Security Symposium (USENIX Security 21), pp. 3345–3361 (2021)

7. Cadar, C., Dunbar, D., Klee, D.E.: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of Operating System
Design and Implementation, pp. 209–224

8. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

9. Chang, R.K.: Defending against flooding-based distributed denial-of-service
attacks: a tutorial. IEEE Commun. Mag. 40(10), 42–51 (2002)

10. Chipounov, V., Kuznetsov, V., Candea, G.: S2e: a platform for in-vivo multi-path
analysis of software systems. Acm Sigplan Notices 46(3), 265–278 (2011)

11. Chipounov, V., et al.: The s2e platform: design, implementation, and applications.
ACM Trans. Comput. Syst. (TOCS) 30(1), 1–49 (2012)

12. Deshmukh, R.V., Devadkar, K.K.: Understanding ddos attack & its effect in cloud
environment. Proc. Comput. Sci. 49, 202–210 (2015)

13. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning ddos detection for con-
sumer internet of things devices. In: 2018 IEEE Security and Privacy Workshops
(SPW), pp. 29–35. IEEE (2018)

14. Fayaz, S.K., Tobioka, Y., et al.: Bohatei: Flexible and elastic {DDoS} defense. In:
24th USENIX Security Symposium (USENIX Security 15), pp. 817–832 (2015)

15. Feamster, N., et al.: The road to sdn: an intellectual history of programmable
networks. ACM SIGCOMM Comput. Commun. Rev. 44(2), 87–98 (2014)

16. Gaurav, A., Gupta, B.B., Alhalabi, W., Visvizi, A., Asiri, Y.: A comprehensive
survey on ddos attacks on various intelligent systems and it’s defense techniques.
Int. J. Intell. Syst. 37(12), 11407–11431 (2022)

17. Granberg, N.: Evaluating the effectiveness of free rule sets for snort (2022)
18. Guha, B., Mukherjee, B.: Network security via reverse engineering of tcp code:

vulnerability analysis and proposed solutions. IEEE Netw. 11(4), 40–48 (1997)
19. Herrera, J.G., Botero, J.F.: Resource allocation in nfv: a comprehensive survey.

IEEE Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)
20. Hong, S., Xu, L., et al.: Poisoning network visibility in software-defined networks:

New attacks and countermeasures. In: Network and Distributed System Security
Symposium (2015). https://api.semanticscholar.org/CorpusID:12312831

21. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against
spoofed ddos traffic. In: Proceedings of the 10th ACM Conference on Computer
and Communications Security, pp. 30–41 (2003)

https://api.semanticscholar.org/CorpusID:12312831

DDoSMiner 307

22. Joseph, D.A., et al.: A policy-aware switching layer for data centers. In: Proceedings
of the ACM SIGCOMM 2008 Conference On Data Communication, pp. 51–62
(2008)

23. Kaur, R., Singh, M.: A survey on zero-day polymorphic worm detection techniques.
IEEE Commun. Surv. Tutorials 16(3), 1520–1549 (2014)

24. Keromytis, A.D., et al.: Sos: an architecture for mitigating ddos attacks. IEEE J.
Sel. Areas Commun. 22(1), 176–188 (2004)

25. Krupp, J., Grishchenko, I., Rossow, C.: {AmpFuzz}: Fuzzing for amplification
{DDoS} vulnerabilities. In: 31st USENIX Security Symposium (USENIX Security
22), pp. 1043–1060 (2022)

26. Lalou, M., Tahraoui, M.A., Kheddouci, H.: The critical node detection problem in
networks: a survey. Comput. Sci. Rev. 28, 92–117 (2018)

27. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proc. IEEE 84(8), 1090–1123 (1996)

28. Liu, Z., et al.: Jaqen: A {High-Performance}{Switch-Native} approach for detect-
ing and mitigating volumetric {DDoS} attacks with programmable switches. In:
30th USENIX Security Symposium (USENIX Security 21), pp. 3829–3846 (2021)

29. Liu, Z., Jin, H., Hu, Y.C., Bailey, M.: Practical proactive ddos-attack mitigation
via endpoint-driven in-network traffic control. IEEE/ACM Trans. Network. 26(4),
1948–1961 (2018)

30. Mirsky, Y., Guri, M.: Ddos attacks on 9-1-1 emergency services. IEEE Trans.
Dependable Secure Comput. 18(6), 2767–2786 (2020)

31. Mizrak, A.T., Savage, S., Marzullo, K.: Detecting compromised routers via packet
forwarding behavior. IEEE Netw. 22(2), 34–39 (2008)

32. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring inter-
net denial-of-service activity. ACM Trans. Comput. Syst. (TOCS) 24(2), 115–139
(2006)

33. Mosenia, A., Jha, N.K.: A comprehensive study of security of internet-of-things.
IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2016)

34. Nayak, J., Meher, S.K., Souri, A., Naik, B., Vimal, S.: Extreme learning machine
and bayesian optimization-driven intelligent framework for iomt cyber-attack
detection. J. Supercomput. 78(13), 14866–14891 (2022)

35. Nazario, J.: Ddos attack evolution. Netw. Secur. 2008(7), 7–10 (2008)
36. O’Leary, M., O’Leary, M.: Snort. Cyber Operations: Building, Defending, and

Attacking Modern Computer Networks, pp. 605–641 (2015)
37. Praseed, A., Thilagam, P.S.: Multiplexed asymmetric attacks: Next-generation

ddos on http/2 servers. IEEE Trans. Inf. Forensics Secur. 15, 1790–1800 (2019)
38. Rossow, C.: Amplification hell: Revisiting network protocols for ddos abuse. In:

2014 Network and Distributed System Security Symposium (2014)
39. Santanna, J.J., van Rijswijk-Deij, R., et al.: Booters-an analysis of ddos-as-a-service

attacks. In: 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pp. 243–251. IEEE (2015)

40. Sharafaldin, I., Lashkari, A.H., Hakak, S., Ghorbani, A.A.: Developing realistic
distributed denial of service (ddos) attack dataset and taxonomy. In: 2019 Inter-
national Carnahan Conference on Security Technology (ICCST), pp. 1–8. IEEE
(2019)

41. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012)

308 X. Ling et al.

42. Shoshitaishvili, Y., Wang, R., et al.: Sok:(state of) the art of war: offensive tech-
niques in binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP),
pp. 138–157. IEEE (2016)

43. Song, H., Liu, J., Yang, J., Lei, X., Xue, G.: Two types of novel dos attacks
against cdns based on http/2 flow control mechanism. In: European Symposium
on Research in Computer Security, pp. 467–487. Springer (2022)

44. Song, Z., Zhao, Z., Zhang, F., et al.: I2RNN: An incremental and interpretable
recurrent neural network for encrypted traffic classification. IEEE Transactions on
Dependable and Secure Computing (2023)

45. Specht, S., Lee, R.: Taxonomies of distributed denial of service networks, attacks,
tools and countermeasures. CEL2003-03, Princeton University, Princeton, NJ, USA
(2003)

46. Srivastava, A., Gupta, B.B., Tyagi, A., Sharma, A., Mishra, A.: A recent survey on
ddos attacks and defense mechanisms. In: Nagamalai, D., Renault, E., Dhanuskodi,
M. (eds.) Advances in Parallel Distributed Computing: First International Confer-
ence on Parallel, Distributed Computing Technologies and Applications, PDCTA
2011, Tirunelveli, India, September 23-25, 2011. Proceedings, pp. 570–580. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
24037-9 57

47. Stephens, N., Grosen, J., et al.: Driller: Augmenting fuzzing through selective sym-
bolic execution. In: NDSS. vol. 16, pp. 1–16 (2016)

48. Sung, M., Xu, J.: Ip traceback-based intelligent packet filtering: a novel technique
for defending against internet ddos attacks. IEEE Trans. Parallel Distrib. Syst.
14(9), 861–872 (2003)

49. Thing, V.L., Sloman, M., Dulay, N.: Non-intrusive ip traceback for ddos attacks.
In: Proceedings of the 2nd ACM Symposium On Information, Computer and Com-
munications Security, pp. 371–373 (2007)

50. Wagner, D., Kopp, D., et al.: United we stand: Collaborative detection and miti-
gation of amplification ddos attacks at scale. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pp. 970–987
(2021)

51. Wang, Z., Zhu, S.: Symtcp: Eluding stateful deep packet inspection with automated
discrepancy discovery. In: Network and Distributed System Security Symposium
(NDSS) (2020)

52. Xing, J., Wu, W., Chen, A.: Ripple: A programmable, decentralized {Link-
Flooding} defense against adaptive adversaries. In: 30th USENIX Security Sym-
posium (USENIX Security 21), pp. 3865–3881 (2021)

53. Yaar, A., Perrig, A., Song, D.: Stackpi: new packet marking and filtering mech-
anisms for ddos and ip spoofing defense. IEEE J. Sel. Areas Commun. 24(10),
1853–1863 (2006)

54. Yan, Q., et al.: Software-defined networking (sdn) and distributed denial of service
(ddos) attacks in cloud computing environments: A survey, some research issues,
and challenges. IEEE Commun. Surv. Tutorials 18(1), 602–622 (2015)

55. Yoachimik, O., Pacheco, J.: DDoS threat report for 2023 q2 (2023). https://blog.
cloudflare.com/ddos-threat-report-2023-q2/ Accessed 20 Sept 2023

56. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against dis-
tributed denial of service (ddos) flooding attacks. IEEE Commun. Surv. Tutorials
15(4), 2046–2069 (2013)

57. Zhang, M., Li, G., et al.: Poseidon: mitigating volumetric ddos attacks with pro-
grammable switches. In: the 27th Network and Distributed System Security Sym-
posium (NDSS 2020) (2020)

https://doi.org/10.1007/978-3-642-24037-9_57
https://doi.org/10.1007/978-3-642-24037-9_57
https://blog.cloudflare.com/ddos-threat-report-2023-q2/
https://blog.cloudflare.com/ddos-threat-report-2023-q2/

DDoSMiner 309

58. Zhang, Z., Yuan, B., Yang, K., Zou, D., Jin, H.: Statediver: Testing deep packet
inspection systems with state-discrepancy guidance. In: Proceedings of the 38th
Annual Computer Security Applications Conference, pp. 756–768 (2022)

59. Zhao, Z., Li, Z., et al.: DDoS Family: A Novel Perspective for Massive Types of
DDoS Attacks. Comput, Secur (2023)

60. Zhao, Z., Li, Z., et al.: ERNN: error-resilient RNN for encrypted traffic detec-
tion towards network-induced phenomena. IEEE Transactions on Dependable and
Secure Computing (2023)

61. Zhao, Z., Liu, Z., et al.: Effective DDoS mitigation via ML-driven in-network traffic
shaping. IEEE Transactions on Dependable and Secure Computing (2024)

62. Zhao, Z., et al.: CMD: co-analyzed iot malware detection and forensics via network
and hardware domains. IEEE Transactions on Mobile Computing (2023)

63. Zou, Y.H., Bai, J.J., et al.: {TCP-Fuzz}: Detecting memory and semantic bugs
in {TCP} stacks with fuzzing. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pp. 489–502 (2021)

	DDoSMiner: An Automated Framework for DDoS Attack Characterization and Vulnerability Mining
	1 Introduction
	2 Background and Related Work
	2.1 TCP-Based DDoS Attacks
	2.2 DDoS Mining/Exploit Schemes
	2.3 Exploration TCP Stack with Symbolic Execution

	3 Threat Model and Problem Definition
	3.1 Threat Model
	3.2 Problem Definition

	4 Workflow of DDoSMiner
	4.1 Generation of Attack Call Flow Graph
	4.2 Selective Symbolic Execution

	5 Evaluation
	5.1 Experiment Configuration
	5.2 Attack Call Flow Graph Analysis
	5.3 Symbol Execution Experiment Setup
	5.4 Symbolic Execution Results
	5.5 Evasion Evaluation Against IDS

	6 Conclusion
	7 Limitations and Future Work
	A Visualization and Analysis of System Calls
	B The Kernel Address Corresponding to the Full Drop Nodes for Six Categories of Attacks
	References

