

GameRTS: A Regression Testing Framework for Video Games

Jiongchi Yu, Yuechen Wu, Xiaofei Xie, Wei Le, Lei Ma, Yingfeng Chen, Yujing Hu, Fan Zhang

Background

- Video games are popular and often frequently updated:
 - More than 50% web users play video games every week
 - Industrial game software can be updated **3** internal versions per day
 - Rapid updates of the game bring many **regression bugs**
- Regression testing is urgently required but costy:
 - Regression testing can take up **80%** of the testing budget
 - Regression Testing Selection (RTS) is needed for selecting the proper test cases

01

Motivating Example

Motivating Example

[Change of State 6]

Challenges

- Select ALL test cases
- LONG execution time

Current Approaches for NetEase

- Scripts
- Manual testing

Game Companies Sacrificed the **Effectiveness** for Detecting Bugs for Testing **Efficiency**

How can we select the regression test cases of video

games for both **Effectiveness and Practicality**?

Empirical Study of Video Game Bugs

Finding 1:

After analyzing 2763 bugs, we found

the bugs are related to the changes

of the 3 types of game files

Study of Game Context Sensitivity

Study of Game Context Sensitivity

Findings 2: From 6 industrial games, we found that games are usually context-insensitive

Design of GameRTS

Four Phases:

- 1. State Transition Graph (STG) Construction
- 2. STG-based Dependency Analysis
- 3. Change Impact Analysis
- 4. Regression Test Selection

Evaluation

- 10 tasks in 3 versions of a popular video game named Justice Online (逆水寒), which has more than 30 millions of users
- 50 initial test cases
- Baselines
 - Running all the test cases
 - Running randomly selected test cases
 - Manual testing under 5 professional game testers

Evaluation - Effectiveness and Efficiency

• Bug Detection Ability and Costs

	$V_0 \rightarrow V_1$											$V_1 \rightarrow V_2$										
ID	GameRTS			A	11	$\overline{7}$	Random		Human		GameRTS			All		$\overline{\mathbf{T}}$	Rando	om Human				
	Time(n	i) #Bug		Time(h)		#Bug	Time(m)	#Bug	Time(m)	#Bug	T	me(m)	#Bug	Time(h)		#Bug	Time(m)	#Bug	Time(m)	#Bug		
1	14.8	2		15.1		2	14.4	0.8	17.2	2		15.6	1	17.2		1	14.6	1.0	18.4	0		
2	10.1	3	11	18.5	\ /	3	10.7	1.0	11.8	0		10.0	3	19.5	M	3	13.3	1.3	10.0	0.8		
3	10.0	3	M	15.6	M	3	15.5	1.8	8.6	0		9.6	1	17.9	N	1	15.3	0.0	11.9	0		
4	10.0	1	П	6.4	M	1	15.4	1.0	9.7	0		10.0	1	9.5		1	17.1	1.0	8.8	0		
5	10.0	2	Ш	8.0		2	19.0	0.0	15.6	0.6		10.1	2	12.3		2	21.0	0.0	14.8	0		
6	9.4	1		5.7	Ш	1	15.8	1.0	11.3	0		10.0	1	6.5		1	20.4	0.0	10.6	0		
7	10.9	1	Ш	7.5	Ш	1	14.9	0.0	8.4	0		9.7	2	8.5		2	15.5	0.5	10.1	0		
8	5.8	1	П	12.8	Л	1	15.2	0.0	4.9	0		6.8	0	9.7	Ι	0	18.4	0.3	5.9	0		
9	10.0	1	Π	5.6	N	1	20.4	0.5	15.1	0		10.0	1	6.3	Λ	1	20.3	1.0	14.8	0.6		
10	10.2	1		7.5		1	20.8	0.0	15.0	0		10.3	0	12.9		0	20.8	0.0	15.2	0		
Total	101.2	16		102.5		16	162.1	6.1	117.6	2.6		102.1	12	120.3	\square	12	176.7	5.1	120.4	1.4		
	\cup	\cup		\bigcirc		V						\bigcirc	\bigvee	\bigtriangledown		\bigcup						

GameRTS achieves balance between practicality and safety, which detect ALL

known regression bugs and greatly save the computational resources

Description: The updated version introduced Quick Time Event (QTE) for increasing the difficulty

Bug: The check code adopts *press_num* == *n*. When pressing the correct key more than n times, it will lead the game to stuck

Repair: Fix the conditional statement for *press_num* from == *n* to > *n*

During our experiment, GameRTS detects 2 new bugs

- We propose **GameRTS**, a STG based regression testing selection framework specially for video games, which balanced the **efficiency** and **effectiveness**
- Depending on the testing budget and context characteristics of the games,
 GameRTS can adopt different policies for strategic test cases selection.
- Website: <u>https://sites.google.com/view/gamerts</u>

Website

Q & A

Presented by Jiongchi Yu (jcyu.2022@phdcs.smu.edu.sg)

Website